• 제목/요약/키워드: Forced Motion

검색결과 229건 처리시간 0.023초

Heave Compensator를 고려한 파랑 중 해상 크레인 설치작업 수치해석 (Numerical Analysis of Offshore Installation Using a Floating Crane with Heave Compensator in Waves)

  • 남보우;홍사영;김종욱;이동엽
    • 한국해양공학회지
    • /
    • 제26권1호
    • /
    • pp.70-77
    • /
    • 2012
  • In this study, a numerical analysis of offshore installation using a floating crane with heave compensator is carried out in time domain. The motion analysis of crane vessels is based on floating body dynamics using convolution integral and the crane wire is treated as simple spring. The lifted structure is assumed as a rigid body with 3 degree-of-freedom translational motion. The heave compensator is numerically modelled by the generalized spring-damper system. Firstly, forced motion simulations of crane wire system are carried out to figure out the basic principle of heave compensator. The transfer function of crane wire system is obtained and effective wave period of heave compensator are found. Then, coupled analysis of crane vessel, crane wire, and lifted structure are performed in regular and irregular sea conditions. Two different crane vessels and two lifted structures (suction pile and manifold) are considered in this study. Through a series of numerical calculations, the effective zone of heave compensator is investigated with respect to wave period and crane wire length.

Combination resonances in forced vibration of spar-type floating substructure with nonlinear coupled system in heave and pitch motion

  • Choi, Eung-Young;Jeong, Weui-Bong;Cho, Jin-Rae
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제8권3호
    • /
    • pp.252-261
    • /
    • 2016
  • A spar-type floating substructure that is being widely used for offshore wind power generation is vulnerable to resonance in the heave direction because of its small water plane area. For this reason, the stable dynamic response of this floating structure should be ensured by accurately identifying the resonance characteristics. The purpose of this study is to analyze the characteristics of the combination resonance between the excitation frequency of a regular wave and natural frequencies of the floating substructure. First, the nonlinear equations of motion with two degrees of freedom are derived by assuming that the floating substructure is a rigid body, where the heaving motion and pitching motions are coupled. Moreover, to identify the characteristics of the combination resonance, the nonlinear term in the nonlinear equations is approximated up to the second order using the Taylor series expansion. Furthermore, the validity of the approximate model is confirmed through a comparison with the results of a numerical analysis which is made by applying the commercial software ANSYS AQWA to the full model. The result indicates that the combination resonance occurs at the frequencies of ${\omega}{\pm}{\omega}_5$ and $2{\omega}_{n5}$ between the excitation frequency (${\omega}$) of a regular wave and the natural frequency of the pitching motion (${\omega}_{n5}$) of the floating substructure.

NUMERICAL MODEL FOR STORM SURGES

  • Yamashita, Takao;Bekku, Isao
    • 한국해안해양공학회:학술대회논문집
    • /
    • 한국해안해양공학회 1995년도 정기학술강연회 발표논문 초록집
    • /
    • pp.1-4
    • /
    • 1995
  • Storm surges are defined as abnormal changes of sea surface elevation whose periods range from several hours to days. The generation mechanism is separated into two. One is sea water suction due to atmospheric depression and the other is wind-driven sea water circulation. The former is a forced long-wave motion which is accompanied by a typhoon. (omitted)

  • PDF

Dynamic Analysis and Optimal Design of Engine Mount Systems with Consideration of Foundation Flexibility

  • Lee, Sang-Beom;Yim, Hong-Jae;Lee, Jang-Moo
    • The Journal of the Acoustical Society of Korea
    • /
    • 제20권2E호
    • /
    • pp.51-58
    • /
    • 2001
  • Equations of motion of an engine mount system including foundation flexibility are derived. Forced vibration analysis is carried out for the given engine mount system excited with the unbalanced force and moment. A new optimal design method for the engine mount system is proposed, in which vibration characteristics of the chassis frame structure are considered as design parameters.

  • PDF

Transient response of 2D functionally graded beam structure

  • Eltaher, Mohamed A.;Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • 제75권3호
    • /
    • pp.357-367
    • /
    • 2020
  • The objective of this article is investigation of dynamic response of thick multilayer functionally graded (FG) beam under generalized dynamic forces. The plane stress problem is exploited to describe the constitutive equation of thick FG beam to get realistic and accurate response. Applied dynamic forces are assumed to be sinusoidal harmonic, sinusoidal pulse or triangle in time domain and point load. Equations of motion of deep FG beam are derived based on the Hamilton principle from kinematic relations and constitutive equations of plane stress problem. The numerical finite element procedure is adopted to discretize the space domain of structure and transform partial differential equations of motion to ordinary differential equations in time domain. Numerical time integration method is used to solve the system of equations in time domain and find the time responses. Numerical parametric studies are performed to illustrate effects of force type, graduation parameter, geometrical and stacking sequence of layers on the time response of deep multilayer FG beams.

복소 전단탄성계수를 갖는 다층 감쇠보의 유한요소 진동 해석 (Finite Element Vibration Analysis of Multi-layered Damped Sandwich Beam with Complex Shear Modulus)

  • 배승훈;원성규;정의봉;조진래;배수룡
    • 한국소음진동공학회논문집
    • /
    • 제21권1호
    • /
    • pp.9-17
    • /
    • 2011
  • In this paper, the general equation of motion of damped sandwich beam with multi-viscoelastic material layer was derived based on the equation presented by Mead and Markus. The viscoelastic layer, which has characteristics of complex shear modulus, was assumed to be dominantly under shear deformation. The equation of motion of n-layered damped sandwich beam in bending could be represented by (n+3)th order ordinary differential equation. Finite element model for the n-layered damped sandwich beam was formulated and programmed using higher order shape functions. Several numerical examples were implemented to show the effects of damped material.

휨과 비틀림이 연계된 채널보의 진동 (Coupled flexural and torsional vibration of channel beam)

  • 김상환
    • 소음진동
    • /
    • 제5권3호
    • /
    • pp.327-335
    • /
    • 1995
  • The study deals with the vibration of a beam whose flexural and centroidal axes are not coincident. The elementary bending-twisting theory is employed to derive the equation of motion, in which the effects of rotary inertia are added to the bending displacements and the effects of warping are added to the twist. Bending translation is restricted to one direction so that one bending equation is used instead of two. The equations of motion are solved by using the boundary value problem. The exact natural frequencies are fund from the frequency equation, which is obtained from the condition that the homogeneous system of algebraic equations representing the spatial solution shall not yield a trivial solution. The orthogonal conditions are established, and the principal mode equations of forced vibration are derived. As an example, the cantilevered beam is chosen and the first some natural frequencies and their modal shapes are found.

  • PDF

자동차 배기계 설계를 위한 엔진운동변위 산출에 관한 연구 (A Study on the Evaluation of Engine Motion for the Design in Automobile Exhaust System)

  • 이완익;박경진;이권희
    • 한국자동차공학회논문집
    • /
    • 제1권1호
    • /
    • pp.120-130
    • /
    • 1993
  • In the analysis of automobile exhaust system, the exciting forces from the engine determine the dynamic behavior of the system and the dynamic characteristics influence the riding quality. Therefore, the identification of the force in numeric value is quite important for the vibrational reduction. However, the value is difficult to obtain by experiments due to harsh conditions around the engine. In this research, an optimization technology is adopted to evaluate the exciting forces. An experimental method is conducted for the verification of the finite element modeling. Displacements on the end of the exhaust system are measured under the idling environment. cost function is set up to minimize the differences between the displacements of the numerical simulation and the experiment. Design variables are the components of the exciting forces. That is, optimization is utilized to estimate the forces with existing data. Excellent estimations have been calculated efficiently and the information is used again for the forced vibration of the exhaust system.

  • PDF

미세진동 측정을 통한 지반응답특성 평가 (Estimation of Ground Response Characteristics by Microtremor)

  • 조성호;이일화;고학송
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.718-721
    • /
    • 2005
  • The purpose of the study is to evaluate the usage of microtremor in estimation of subsurface structure and ground response to ground motion. Ground motion amplification based on site condition of an area is an important parameter for dynamic design. Microtremor cover the characteristics in a low frequency range, while forced vibrations cover them in a high-frequency range. Microtremor consider ground characteristics and offer transfer function in area. To determine the dominant frequency, the passive microtremor measurement is performed and to determine the transfer function of test site, active microtremor measurement is performed. Microtremor measurement in the site is compared with theoretical transfer function calculated from the known structures.

  • PDF

탄성 날개 끝단의 공력 소음에 관한 전산해석 연구 (Computational Study on Aeroacoustics of an Elastic Cantilevered Trailing-Edge)

  • 황본창;문영준
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.159-168
    • /
    • 2005
  • Noise generated by the blunt trailing edge of lifting surfaces is investigated in this study using fluid structure interaction theory. First, through the eddy modeling, noise generation doe to the flow instability on the rigid trailing edge is surveyed. Then the behavior of elastic cantileverd beam is investigated. Parametric study based on various material properties is employed to analyze the motion of the beam. Moreover, each eigenmode approach of cantilevered beam is used to find when flow induced vibration is resonant. To analyze elastic behavior of cantilever beam efficiently, moving grid generation technique based on non-conservative form of Navier-Stokes equation is used. Equation of the motion associated with the cantilever beam is discretized by the Galerkin procedure with forced vibration. As a consequence, behavior of the elastic cantilevered beam is stable when the first mode natural frequency of the material is relatively higher than that of flow induced pressure fluctuation.

  • PDF