• Title/Summary/Keyword: Forced

Search Result 3,521, Processing Time 0.039 seconds

Wilted Symptom in Watermelon Plant under Ventilation Systems (환기처리에 의한 수박의 시듦증 발생 기작)

  • Cho, Ill-Hwan;Ann, Joong-Hoon;Lee, Woo-Moon;Moon, Ji-Hye;Lee, Joo-Hyun;Choi, Byung-Soon;Son, Seon-Hye;Choi, Eun-Young;Lee, Sang-Gyu;Woo, Young-Hoe
    • Horticultural Science & Technology
    • /
    • v.28 no.4
    • /
    • pp.529-534
    • /
    • 2010
  • Occurrence of wilted symptom in watermelon plant ($Citrullus$ $lanatus$ L.) is known to be caused by physiological disorder. The symptom results in the loss of fruit production and thus the economical loss of watermelon growers. The incidence of symptom is often found from the middle of March to the end of May in the major watermelon crop production areas of Korea (i.e. Uiryeong, Gyeongnam (lat $37^{\circ}$56'64"N, long $126^{\circ}$99'97"E)). Despite of extensive information about the physiological disorder, little study has been conducted to understand a relationship between the wilted symptom and accompanying environment factors (e.g. temperature). This study aimed to investigate effects of environmental conditions amended by a forced-ventilation system on physiological characteristics of watermelon and incidence of the wilted symptom. Watermelon plants were grown from January to May, 2009 with either the forced-or natural-ventilation treatment in a greenhouse located in the Uiryeong. In the result, the forced-ventilation treatment decreased the air, leaf and root-zone temperature approximately $4.5^{\circ}C$, $5^{\circ}C$ and $3^{\circ}C$, respectively, compared to the natural-ventilation. The fruit growth rate was maximized twice during the entire growing period. The higher rate of fruit growth was observed under the natural-ventilation than the forced one. Maximization of the fruit growth rate (approximately 430 g per day) was first observed by 12 days after fruiting under the natural-ventilation treatment, while the second one (approximately 350 g per day) was observed by 24 days after fruiting. The wilted symptom started occurring by 22 days after fruiting under the natural-ventilation, whereas no incidence of the symptom was found under the forced-ventilation treatment. Interestingly, the forced-ventilation lowered the fruit growth rate (approximately 320 g per day) compared to the natural one. Maximization of the fruit growth rate under the forced-ventilation was found at 4 days later than that under the natural one. This result coincided with a slower plant growth under the forced-ventilation treatment. These results suggest that the forced-ventilation slows down extension growth of fruit and plant, which may be associated with lowering leaf temperature and saturation deficit. We suggest the hypothesis that the forced-ventilation may alleviate stress of the wilted symptom by avoiding extreme water evaporation from leaves due to high temperature and thus by reducing competition between leaves and fruits for water. More direct and detailed investigations are needed to confirm the effect of the forced ventilation.

Effects of Fire Curtain and Forced Smoke Ventilation on Smoke Spread to Auditorium in Stage Fire of Theater (공연장 무대 화재 시 방화막과 강제 배연구가 객석으로의 연기 확산에 미치는 영향)

  • Kim, Jae Han;Kim, Duncan;Lee, Chi Young
    • Fire Science and Engineering
    • /
    • v.31 no.5
    • /
    • pp.28-36
    • /
    • 2017
  • In this work, the effects of fire curtain and forced smoke ventilation on smoke spread to auditorium in the stage fire of theater were investigated using the Fire Dynamics Simulator (FDS). For the stage of 31 m (Width)${\times}$34 m (Depth)${\times}$32 m (Height) in dimension, the fast growth fire condition with 10 MW of heat release rate was applied. The forced smoke ventilation was set based on the National Fire Safety Code (NFSC) and previous research. The gap distances between the fire curtain and proscenium wall was established to be 0 m and 0.5 m. When the fire curtain was attached completely to the proscenium wall without any gap, no smoke spread from the stage to the auditorium occurred, independent of forced smoke ventilation. When the gap distance between the fire curtain and proscenium wall was 0.5 m, the smoke layer in the stage descended to the lower height from the bottom than the case without the fire curtain, which was because the smoke spread to auditorium was impeded by the fire curtain. Under the same fire curtain condition, the case with the forced smoke ventilation led to decreasing the mass flow rate of outflow through the gap between the fire curtain and proscenium wall, as compared to the case without the forced smoke ventilation. Based on this study, it was confirmed that the fire curtain and forced smoke ventilation were the effective tools to hold down the smoke spread to the auditorium in the stage fire of theater.

MONOTONE ITERATION SCHEME FOR A FORCED DUFFING EQUATION WITH NONLOCAL THREE-POINT CONDITIONS

  • Alsaedi, Ahmed
    • Communications of the Korean Mathematical Society
    • /
    • v.22 no.1
    • /
    • pp.53-64
    • /
    • 2007
  • In this paper, we apply the generalized quasilinearization technique to a forced Duffing equation with three-point mixed nonlinear nonlocal boundary conditions and obtain sequences of upper and lower solutions converging monotonically and quadratically to the unique solution of the problem.

Effects of Water-misting Sprays with Forced Ventilation after Transport during Summer on Meat Quality, Stress Parameters, Glycolytic Potential and Microstructures of Muscle in Broilers

  • Jiang, N.N.;Xing, T.;Wang, P.;Xie, C.;Xu, X.L.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.12
    • /
    • pp.1767-1773
    • /
    • 2015
  • Effects of water-misting sprays with forced ventilation after transport during summer on meat quality, stress parameters, glycolytic potential and microstructures of muscle in broilers were investigated. A total of 105 mixed-sex Arbor Acres broilers were divided into three treatment groups: i) 45-min transport without rest (T group), ii) 45-min transport with 1-h rest (TR group), iii) 45-min transport with 15-min water-misting sprays with forced ventilation and 45-min rest (TWFR group). The results showed the TWFR group significantly increased (p<0.05) initial muscle pH ($pH_i$) and ultimate pH ($pH_u$) and significantly reduced $L^*$ (p<0.05), drip loss, cook loss, creatine kinase, lactate dehydrogenase activity, plasma glucose content, lactate and glycolytic potential when compared with other groups. Microstructure of the muscle from TWFR group broilers under light microscopy showed smaller intercellular spaces among muscle fibers and bundles compared with T group. In conclusion this study indicated water-misting sprays with forced ventilation after transport could relieve the stress caused by transport under high temperature, which was favorable for the broilers' welfare. Furthermore, water-misting sprays with forced ventilation after transport slowed down the postmortem glycolysis rate and inhibited the occurrence of PSE-like meat in broilers. Although rest after transport could also improve the meat quality, the effect was not as significant as water-misting sprays with forced ventilation after transport.

Size dependent axial free and forced vibration of carbon nanotube via different rod models

  • Khosravi, Farshad;Simyari, Mahdi;Hosseini, Seyed A.;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.9 no.3
    • /
    • pp.157-172
    • /
    • 2020
  • The aim of this present research is the effect of the higher-order terms of the governing equation on the forced longitudinal vibration of a nanorod model and making comparisons of the results with classical nonlocal elasticity theory. For this purpose, the free axial vibration along with forced one under the two various linear and harmonic axial concentrated forces in zigzag Single-Walled Carbon Nanotube (SWCNT) are analyzed dynamically. Three various theories containing the classical theory, which is called Eringen's nonlocal elasticity, along with Rayleigh and Bishop theories (higher-order theories) are established to justify the nonlocal behavior of constitutive relations. The governing equation and the related boundary conditions are derived from Hamilton's principle. The assumed modes method is adopted to solve the equation of motion. For the free axial vibration, the natural frequencies are calculated for the various values of the nonlocal parameter only based on Eringen's theory. The effects of the nonlocal parameter, thickness, length, and ratio of the excitation frequency to the natural frequency over time in dimensional and non-dimensional axial displacements are investigated for the first time.