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THE MONOTONE PROPERTY OF THE FIRST NONZERO

EIGENVALUE OF THE P-LAPLACIAN ALONG THE

INVERSE MEAN CURVATURE FLOW WITH FORCED TERM

Juncheol Pyo

Abstract. In this paper, we prove that the first nonzero eigenvalues λ1 of

the Laplacian and the p-Laplacian are decreasing along the inverse mean
curvature flow with forced term in Euclidean space.

1. Introduction

Laplace-Beltrami operator is a second order differential operator on a Rie-
mannian manifold. It occurs in many places that describes physical phenomena,
such as the diffusions of heat and fluid flow, wave propagation, and quantum
mechanics. The p-Laplace operator is a nonlinear generalization of the Laplace-
Beltrami operator, where p is allowed to range over 1 < p < ∞. It is written
as

∆pu := ∇ · (|∇u|p−2∇u).

In the special case when p = 2, p-Laplace operator reduces to the usual Laplace-
Beltrami operator.

Geometric flows also called geometric evolution equations were originally con-
ceived as an approach to solve geometric and topological problems. They are
divided into two categories: extrinsic geometric flows are flows on embedded
submanifolds, or more generally on immersed submanifolds; intrinsic geometric
flows are flows on the Riemannian metric, independent of any embedding or
immersion. A well-known intrinsic flow is the Ricci flow. Ricci flow was in-
troduced by Hamilton [9]. Given a Riemannian manifold (M, g0), Ricci flow is
defined as the evolution equation of the metric:

∂

∂t
g = −2Ricg,

with the initial condition

g|t=0 = g0.
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Here, Ricg is the Ricci curvature of the Riemannian metric g. Using Ricci flow,
Perelman proved the 3-dimensional Poincaré conjecture. Ricci flow has many
other applications. See [2, 8] for example.

The mean curvature flow is one of the extrinsic geometric flows. Let {Mt}t∈[0,∞)

be a one parameter family of smooth hypersurfaces in Euclidean space Rn+1,
with a given initial hypersurface M0. Let these hypersurfaces be locally repre-
sented by a diffeomorphism

X : U → X(U) ⊂ Rn+1,

where U is an open subset in Rn. We say that Mt is evolving by the mean
curvature flow if it satisfies the following equation

∂X

∂t
= ~H(x, t),

where ~H(x, t) is the mean curvature vector of the hypersurface Mt at x ∈ U
and time t. See [3, 4, 11, 16] and the references therein for the results related
to the mean curvature flow.

Another extrinsic flow which is well studied and has many applications is the
inverse mean curvature flow (IMCF). It is the evolution of hypersurfaces in the
direction of the unit normal vector with speed equal to the reciprocal of the
mean curvature. In contrast to the mean curvature flow, the hypersurface is
expanding by the IMCF. One of classical results for IMCF is given by Gerhardt
[6]: Under IMCF, any star-shaped compact without boundary, hypersurface
with strictly positive mean curvature evolves for all time and converges to a
round sphere after rescaling (see also [5]). For non-star-shaped hypersurfaces,
singularities may occur in finite time. Using level-set approach and developing
the notion of weak solutions for IMCF, Huisken and Ilmanen [12] overcame
these difficulties and proved the Riemmanian Penrose inequality (see also Bray
[1]).

In this paper, we consider the IMCF with forced term in Euclidean space. We
consider an n-dimensional compact hypersurface M0 without boundary, which
is smoothly embedded in Euclidean space Rn+1. If M0 is locally represented by
a diffeomorphism

X0 : U → X0(U) ⊂M0 ⊂ Rn+1

where U is an open set in Rn, then the inverse mean curvature flow is defined
as

∂X

∂t
=

1

H
~N, X|t=0 = X0.

Here H is the mean curvature and ~N is the outward unit normal of M = Mt.
We consider the IMCF with forced term in Rn+1. We consider embedded

hypersurfaces Mt = Xt(M) in Rn+1 that move with IMCF with forced term
(c < 0):

∂X

∂t
=

(
1

H
− c
)
~N, X|t=0 = X0. (1)
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In a local coordinate {x1, . . . , xn} of X for some given point, we denote the

metric of X by g = gij , the second fundamental form hij = −
〈

∂2X
∂xi∂xj

, ~N
〉

, and

the mean curvature H =
∑n

i,j=1 g
ijhij . We will prove the following theorem

related to the IMCF with forced term in Euclidean space.

Theorem 1.1. Let M = M0 ⊂ Rn+1 be a closed hypersurface satisfies

hij ≥ εgijH

and the mean curvature of M satisfies the pinching condition

(1− pε) max
M

H ≤ min
M

H

along the flow (1) for some 0 < ε ≤ 1

n
. Then the first nonzero eigenvalue of the

p-Laplacian with respect to the metric g is monotonically decreasing along the
flow (1).

We emphasize that we do not assume the differentiability of the eigenvalue
along the flow, since in general we only know that the first nonzero eigenvalue
(that is the second eigenvalue since the first eigenvalue is always zero) is Lip-
schitz continuous, which makes things complicated. But we can overcome this
difficulty by following the method in [15], which does not depend on the differ-
entiability of the eigenvalue and the corresponding eigenfunction.

We note that the monotonically decreasing property of the first eigenvalue
of Laplacian to the IMCF without forced term had shown by Guo et al. [7] and
Pak-Tung Ho and the author [10].

2. Monotonically decreasing property

We denote by A the second fundamental form of (X, g) and dVg the volume
form. We start with the evolution equations to the IMCF with forced term.

Proposition 2.1. The following evolution equations hold:

(1)
∂

∂t
gij = 2

(
1

H
− c
)
hij,

(2)
∂

∂t
dVg = H

(
1

H
− c
)
dVg,

(3)
∂

∂t
hij =

1

H2
∆ghij −

2

H3
∇iH∇jH − c

n∑
l,m=1

glmhjlhim +
1

H2
|A|2hij,

(4)
∂

∂t
H =

1

H2
∆gH −

2

H3
|∇gH|2 −

(
1

H
− c
)
|A|2.

Proof. For (1), the induced metric gij is given by

gij =
〈∂X
∂xi

,
∂X

∂xj

〉
.
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Differentiate it with respect to t, we obtain

∂

∂t
gij =

〈 ∂

∂xi

(
∂X

∂t

)
,
∂X

∂xj

〉
+
〈∂X
∂xi

,
∂

∂xj

(
∂X

∂t

)〉
=
〈 ∂

∂xi

((
1

H
− c
)
~N

)
,
∂X

∂xj

〉
+
〈∂X
∂xi

,
∂

∂xj

((
1

H
− c
)
~N

)〉
=

(
1

H
− c
)〈∂ ~N

∂xi
,
∂X

∂xj

〉
+

(
1

H
− c
)〈∂X

∂xi
,
∂ ~N

∂xj

〉
= −

(
1

H
− c
)〈

~N,
∂2X

∂xi∂xj

〉
−
(

1

H
− c
)〈 ∂2X

∂xi∂xj
, ~N
〉

= 2

(
1

H
− c
)
hij

where the second equality follows from (1), and the third equality follows from〈∂X
∂xi

, ~N
〉

= 0. This proves (1).

For (2), we note that

∂

∂t
det(g) = det(g) tr

(
g−1

∂g

∂t

)
where g−1 is the inverse of the matrix g, and

∂g

∂t
is the n × n matrix whose

(i, j)-entry is
∂gij
∂t

. Hence, by (1), we have

∂

∂t
det(g) = 2

(
1

H
− c
)

det(g) tr(g−1h) = 2

(
1

H
− c
)

det(g)H. (2)

In local coordinates (x1, x2, ..., xn), we have dVg =
√

det(g) dx1 · · · dxn. There-
fore, we have

∂

∂t
dVg =

1

2
√

det(g)

∂

∂t
det(g) dx1 · · · dxn = H

(
1

H
− c
)
dVg

by (2). This proves the assertion.
For (3), using the proof of Lemma 3.1(i) in [5], we get

∂

∂t
hij = −∇i∇j

(
1

H
− c
)

+

(
1

H
− c
) n∑

l,m=1

glmhjlhim −
(

1

H
− c
)
Ri0j0

=
1

H2
∇i∇jH −

2

H3
∇iH∇jH +

(
1

H
− c
) n∑

l,m=1

glmhjlhim,

(3)

where Rijkl is the Riemannian tensors of the ambient space. Now (3) follows
from (3) and the Simons’ identity (see [14]),

∆ghij = ∇i∇jH +H

n∑
l,m=1

glmhjlhim − |A|2hij
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where |A|2 =

n∑
i,j=1

hijhij denotes the squared norm of the second fundamental

form.
For (4), we have

H =

n∑
i,j=1

gijhij

by definition. Differentiate it with respect to t, it follows by (1) and (3). This
proves (4). �

In [13], Liu proved that the flow (1) preserves the convexity:

Theorem 2.2 (Liu). If the initial hypersurface M0 of the flow (1) is strictly
convex, then Mt is also strictly convex for t > 0.

Using the Liu’s result and evolution equations in Proposition 2.1, we have

Lemma 2.3. For any 0 ≤ ε ≤ 1
n , the condition

hij ≥ εHgij
is preserved along the flow (1).

Theorem 2.4 (=Theorem1.1). Suppose that the second fundamental form sat-
isfies

hij ≥ εgijH (4)

and the mean curvature of M satisfies the pinching condition

(1− pε) max
M

H ≤ min
M

H (5)

along the flow (1) for some 0 < ε ≤ 1

n
. Then the first nonzero eigenvalue of the

p-Laplacian with respect to the metric g is monotonically decreasing along the
flow (1).

Proof. For any fixed time t1, we can construct a smooth function f(t) along the
flow (1) satisfying∫

M

|f(t)|pdVg = 1 and

∫
M

|f(t)|p−2f(t)dVg = 0 (6)

and f(t1) is the first eigenfunction of the p-Laplacian with respect to g(t1).
Indeed, if f1 is the first eigenfunction of the p-Laplacian with respect to g(t1),
then one can show that

f(t) =
h(t)

(
∫
M
|h(t)|pdVg)

1
p

satisfies (6), where

h(t) = f1

[
det(gij(t1))

det(gij(t))

] 1
2(p−1)
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and g(t) is the induced metric of M along the flow (1).
Differentiating the first equation in (6) and using Proposition 2.1, we obtain

p

∫
M

|f(t)|p−2f(t)
∂f(t)

∂t
dVg +

∫
M

|f(t)|pH
(

1

H
− c
)
dVg = 0. (7)

If we let

G(g(t), f(t)) =

∫
M

|∇gf(t)|pdVg,

then, by (7), Proposition 2.1 and integration by parts, we have

G(g(t), f(t))

:=
d

dt
G(g(t), f(t))

=

∫
M

∂

∂t
(|∇gf(t)|p)dVg +

∫
M

|∇gf(t)|p ∂
∂t
dVg

=

∫
M

p|∇gf(t)|p−2
(
−
( 1

H
− c
) n∑

i,j=1

hij
∂f(t)

∂xi

∂f(t)

∂xj
+
〈
∇gf(t),∇g

∂f(t)

∂t

〉)
dVg

+

∫
M

|∇gf(t)|pH
( 1

H
− c
)
dVg

= −p
∫
M

|∇gf(t)|p−2
( 1

H
− c
) n∑

i,j=1

hij
∂f(t)

∂xi

∂f(t)

∂xj
dVg

− p
∫
M

divg

(
|∇gf(t)|p−2∇gf(t)

)∂f(t)

∂t
dVg +

∫
M

|∇gf(t)|pH
( 1

H
− c
)
dVg

= −p
∫
M

|∇gf(t)|p−2
( 1

H
− c
) n∑

i,j=1

hij
∂f(t)

∂xi

∂f(t)

∂xj
dVg

+ pλp(t)

∫
M

|f(t)|p−2f(t)
∂f(t)

∂t
dVg +

∫
M

|∇gf(t)|pH
( 1

H
− c
)
dVg

= −p
∫
M

|∇gf(t)|p−2
( 1

H
− c
) n∑

i,j=1

hij
∂f(t)

∂xi

∂f(t)

∂xj
dVg

− λp(t)

∫
M

|f(t)|pH
( 1

H
− c
)
dVg +

∫
M

|∇gf(t)|pH
( 1

H
− c
)
dVg.

(8)
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Combining (4) and (8), we obtain

G(g(t), f(t))

≤ −pε
∫
M

|∇gf(t)|p−2H
( 1

H
− c
) n∑

i,j=1

gij
∂f(t)

∂xi

∂f(t)

∂xj
dVg

− λp(t)

∫
M

|f(t)|pH
( 1

H
− c
)
dVg +

∫
M

|∇gf(t)|pH
( 1

H
− c
)
dVg

= −λp(t)

∫
M

|f(t)|pH
( 1

H
− c
)
dVg + (1− pε)

∫
M

|∇gf(t)|pH
( 1

H
− c
)
dVg.

(9)

In particular, at t = t1, we have

− λp(t1)

∫
M

|f(t1)|pH
( 1

H
− c
)
dVg + (1− pε)

∫
M

|∇gf(t1)|pH
( 1

H
− c
)
dVg

= −λp(t1) + cλp(t1)

∫
M

|f(t1)|pHdVg + (1− pε)λp(t1)− c(1− pε)
∫
M

|∇gf(t1)|pHdVg

≤ −pελp(t1) + cλp(t1)
(

min
M

H
)∫

M

|f(t1)|pdVg − c(1− pε)
(

max
M

H
)∫

M

|∇gf(t1)|pdVg

= λp(t1)
[
−pε− c

(
(1− pε) max

M
H −min

M
H
)]

< 0,

(10)

where we have used (6), (5), and the fact that c < 0 and f(t1) is the first
eigenfunction of the p-Laplacian with respect to g(t1). Hence, by (9), (10) and
the assumption that f is smooth, we can conclude that

G(g(t), f(t)) ≤ 0

when t is sufficiently closed to t1. Since G(g(t1), f(t1)) = λp(t1) and the first
eigenvalue is the infimum of Rayleigh quotient, we conclude that

λp(t2)− λp(t1) ≤ 0

when t2 ≥ t1 and t2 is sufficiently closed to t1. Since t1 is arbitrary, we prove
the assertion. �

Theorem 2.5. The first nonzero eigenvalue of the Laplacian with respect to g
is monotonically decreasing along the flow (1).

Proof. Since the initial surface M is compact and uniformly convex, we can find
a small ε > 0 such that (4) is satisfied and hij ≥ εgijH on M . It follows from
Lemma 2.3 that (4) is preserved along the flow (1). Now Theorem 2.5 follows
from Theorem 2.4 with p = 2. �
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