• Title/Summary/Keyword: Force method

Search Result 8,403, Processing Time 0.029 seconds

A New Method for Lateral Force Calibration in Atomic Force Microscope (원자현미경(AFM)에서 마찰력 측정을 위한 새로운 보정 기술 연구)

  • Yoon Eui-Sung;Kim Hong Joon;Wang Fei;Kong Hosung
    • Tribology and Lubricants
    • /
    • v.21 no.5
    • /
    • pp.221-226
    • /
    • 2005
  • A new calibration method for exact measurement of friction force in atomic force microscope (AFM) is presented. A new conversion factor involves a contact factor affected by tip, cantilever and contact stiffness. Especially the effect of contact stiffness on the conversion factor between lateral force and lateral signal is considered. Conventional conversion factor and a new modified conversion factor were experimentally compared. Results showed that a new calibration method could minimize the effect of normal load on friction force and improve the conventional method. A new method could be applied to the specimens with different physical properties.

The Levitation Mass Method: A Precision Mass and Force Measurement Technique

  • Fujii, Yusaku
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.9 no.3
    • /
    • pp.46-50
    • /
    • 2008
  • The present status and future prospects of the levitation mass method (LMM), a technique for precision mass and force measurement, are reviewed. In the LMM, the inertial force of a mass levitated using a pneumatic linear bearing is used as the reference force applied to the objects being tested, such as force transducers, materials, or structures. The inertial force of the levitated mass is measured using an optical interferometer. We have modified this technique for dynamic force calibration of impact, oscillation, and step loads. We have also applied the LMM to material testing, providing methods for evaluating material viscoelasticity under an oscillating or impact load, evaluating material friction, evaluating the biomechanics of a human hand, and generating and measuring micro-Newton-level forces.

Comparison of Korteweg-Helmholtz Electromagnetic Force Density and Magnetic Charge Force Density in Magnetic Systems (자기시스템의 Korteweg-Helmholtz 전자력 밀도와 자하 전자력 밀도의 비교)

  • Lee, Se-Hui;Choe, Myeong-Jun;Park, Il-Han
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.49 no.4
    • /
    • pp.226-232
    • /
    • 2000
  • In magnetic systems, distribution of electromagnetic force density causes mechanical deformation, which results in noise and vibration. In this paper, Korteweg-Helmholtzs energy method and equivalent magnetic charge method are employed for comparison of their resulting distributions of force density. The force density from the Korteweg-Helmholtzs method is expresses with two Maxwell stresses on the inside and the outside fo magnetic material respectively. The other is calculated using the magnetic Coulombs law. In the numerical model of an electromagnet, their numerical results are compared. The distributions by the two methods are almost the same. And their total forces are also shown to be the same to the one calculated from the conventional Maxwell stress tensor. But the magnetic charge method is easier and more efficient in numerical calculation.

  • PDF

Evaluation of Analytical Method for Detent Spring Force Correction (디텐트 스프링 교정을 위한 해석적방법의 적용성 평가)

  • Kim, Sun-Ho;Kwon, Hyuk-Hong;Park, Kyoung-Taik;Jung, Yong-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.4 s.97
    • /
    • pp.57-63
    • /
    • 1999
  • A thin metal plate such as detent spring has the shape deformation due to the phenomenon of spring back after press machining and heat treatment process. This requires the correction of spring shape and force in final inspection process. To do correction of the shape deformation the impact force is manually applied to the bended part of detent spring after measuring the shape deformation and spring force. To develop the automatic spring force correction system, applied force of occurring plastic deformation must be derived from the experimental method. But frequent change of spring shape and material makes it difficult to accomplish the experimental method to be applied. This paper describes the analytical method for detent spring force correction system is to be substituted for the experimental method. FEM(Finite Element Method) is used to find the boundary value between elastic and plastic deformation in the analytical method. To confirm the validity of the analytical method, the result of two methods is compared each other at various applied force conditions. It shows that the simulation result of the analytical method is consistent with the result of the experimental method within the error bound ${\pm}$5%. The result of this paper is useful for development of the automatic spring correction system and reduction of the complicated and tedious processes involved in experimental method.

  • PDF

Estimation of Dynamic Load of the Utility in Building by TPA Method (TPA 기법을 이용한 건물 내 설비 동하중 산정)

  • Jeong, Min-Ki;Lee, Seong-Soo;Kim, Yong-Ku;Ahn, Sang-Kyung;Lee, Sang-Yeop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.8
    • /
    • pp.773-780
    • /
    • 2009
  • The facility equipments generate dynamic force on building floor and the force can be measured with force transducer. However, this method depends on the measuring capacity or range of sensor, or mounts installation condition of equipments. Because of this restricting condition on force measuring system, this paper suggests a indirect method, the TPA(transfer path analysis) method, that produces a closely approximate dynamic force of equipments. This method calculates the dynamic force by using transfer response function. Firstly, the calculated dynamic force of impact load and continuous load was respectively compared with the sensor-measured value to examine the accuracy of TPA method. After that, the dynamic force and response induced by large facility equipments - a cooling tower, AHU and a large ventilator - were calculated by TPA method and the validity of these value were examined.

An Extended Force Density Method for the form finding of cable systems with new forms

  • Malerba, P.G.;Patelli, M.;Quagliaroli, M.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.191-210
    • /
    • 2012
  • The Force Density Method (FDM) is a well known and extremely versatile tool in form finding of cable nets. In its linear formulation such method makes it possible to find all the possible equilibrium configurations of a net of cables having a certain given connectivity and given boundary conditions on the nodes. Each singular configuration corresponds to an assumed force density distribution. Its improvement as Non-Linear Force Density Method (NLFDM) introduces the possibility of imposing assigned relative distances among the nodes, the tensile level in the elements and/or their initial undeformed length. In this paper an Extended Force Density Method (EFDM) is proposed, which makes it possible to set conditions in terms of given fixed nodal reactions or, in other words, to fix the positions of a certain number of nodes and, at the same time, to impose the intensity of the reaction force. Through such extension, the (EFDM) enables us to deal with form findings problems of cable nets subjected to given constraints and, in particular, with mixed structures, made of cables and struts. The efficiency and the robustness of method are assessed through comparisons with other form finding techniques in dealing with characteristic applications to the prestress design of cable systems. As a further extension, the EFDM is applied to structures having some parts not yet geometrically defined, as can happen in designing new creative forms.

Contact Force Estimation for a Polishing Brush (연마 브러시 접촉력 산출)

  • Lee, Byoung-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.1
    • /
    • pp.58-63
    • /
    • 2010
  • A new contact force estimation technique is proposed. Keeping the contact force at a certain level between finishing tool and the object is essential since the quality of the finished surface is very sensitive to the contact force during the finishing process. However, the contact force measurement cannot be obtained by simply installing load cells under machine table or in the middle of tool linkage. The reason is that the weight of the machine table and the tool linkage are much heavier than the force to be measured. To that end, a method for estimating disturbance is proposed for a system that is similar to the mechanism of the finishing machine, and the same method is applied to estimate the contact force of the brush-type finishing machine. To verify the effectiveness of the proposed method, a small scale test set-up has been built and the method has been tested.

The Incipient Deformation Analysis for Plane Strain Open-Die Forging Processes with V-shaped Dies Using the Force Balance Method (힘평형법을 이용한 V-형다이 평면변형 자유형 단조공정의 초기변형 해석)

  • Lee, J.H.;Kim, B.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.109-117
    • /
    • 1993
  • Force balance method is employed to predict forging information such as forging load, tool pressure and normal stress at the surface of tangential velocity discontinuity. The incipient stages of deformation for the plane strain forging of rectangular billets in V-shaped dies of different semi-angles are analysed. To construct an approximate model for the analysis of deformation by the force balance method in the incipient deformation stages, slip-line field is used. When the deformation mode by slip-line method is the same as that by force balance method, the slip-line method and the force balance method give identical solutions. The effects of die angle, coefficient of friction, billet geometries and deforma- tion characteristics are also investigated. In order to verify the validity of force balance analysis, the rigid-plastic finite element simulation for the various forgig parameters are performed and performed and find to be in good agreement.

  • PDF

Modified nonlinear force density method for form-finding of membrane SAR antenna

  • Xu, Rui;Li, DongXu;Liu, Wang;Jiang, JianPing;Liao, YiHuan;Wang, Jie
    • Structural Engineering and Mechanics
    • /
    • v.54 no.6
    • /
    • pp.1045-1059
    • /
    • 2015
  • Form-finding for cable-membrane structures is a delicate operation. During the last decades, the force density method (FDM) was considered to be an efficient method to address the problem. Many researchers were devoted to improving this method and proposed many methods such as natural force density method (NFDM), improved nonlinear force density method (INFDM), et al. In this paper, a modified nonlinear force density method (MNFDM) is proposed. In this method, the stresses of membrane elements were transformed to the force-densities of cable nets by an equivalent relationship, and then they can be used as initial conditions. By comparing with the forming finding results by using the FDM, NFDM, INFDM and MNFDM, it had demonstrated that the MNFDM presented in this paper is the most efficient and precise.

Vibration analysis of a multi-span beam subjected to a moving point force using spectral element method

  • Jeong, Boseop;Kim, Taehyun;Lee, Usik
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.263-274
    • /
    • 2018
  • In this study, we propose a frequency domain spectral element method (SEM) for the vibration analysis of a multi-span beam subjected to a moving point force. This study is an extension of the authors' previous study for a single-span beam subjected to a moving point force, where the two-element model-based SEM was applied. In this study, each span of a multi-span beam is represented by the Timoshenko beam model and the moving point force is transformed into the frequency domain as a series of each stationary point force distributed on the multi-span beam. The span at which a stationary point force is located is represented by two-element model, but all other spans are represented by one-element models. The vibration responses to a moving point force are obtained by superposing all individual vibration responses generated by each stationary point force. The high accuracy and computational efficiency of the proposed SEM are verified by comparing the solutions by SEM with exact analytical solutions by the integral transform method (ITM) as well as the solutions by the finite element method (FEM).