• 제목/요약/키워드: Force Prediction

검색결과 907건 처리시간 0.027초

A real-time unmeasured dynamic response prediction for nuclear facility pressure pipeline system

  • Seungin Oh ;Hyunwoo Baek ;Kang-Heon Lee ;Dae-Sic Jang;Jihyun Jun ;Jin-Gyun Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권7호
    • /
    • pp.2642-2649
    • /
    • 2023
  • A real-time unmeasured dynamic response prediction process for the nuclear power plant pressure pipeline is proposed and its performance is tested in the test-loop system (KAERI). The aim of the process is to predict unmeasurable or unreachable dynamic responses such as acceleration, velocity, and displacement by using a limited amount of directly measured physical responses. It is achieved by combining a well-constructed finite element model and robust inverse force identification algorithm. The pressure pipeline system is described by using the displacement-pressure vibro-acoustic formulation to consider fully filled liquid effect inside the pipeline structure. A robust multiphysics modal projection technique is employed for the real-time sensor synchronized prediction. The inverse force identification method is also derived and employed by using Bathe's time integration method to identify the full-field responses of the target system from the modal domain computation. To validate the performance of the proposed process, an experimental test is extensively performed on the nuclear power plant pressure pipeline test-loop under operation conditions. The results show that the proposed identification process could well estimate the unmeasured acceleration in both frequency and time domain faster than 32,768 samples per sec.

설계점 및 탈설계점에서 비균일 익단 간극을 가지는 축류 압축기의 유동장 예측 (Prediction of flow field in an axial compressor with a non-uniform tip clearance at the design and off-design conditions)

  • 강영석;박태춘;강신형
    • 한국유체기계학회 논문집
    • /
    • 제11권6호
    • /
    • pp.46-53
    • /
    • 2008
  • Flow structures in an axial compressor with a non-uniform tip clearance were predicted by solving a simple prediction method. For more reliable prediction at the off-design condition, off-design flow characteristics such as loss and flow blockage were incorporated in the model. The predicted results showed that flow field near the design condition is largely dependent on the local tip clearance effect. However overall flow field characteristics are totally reversed at off-design condition, especially at the high flow coefficient. The tip clearance effect decreases, while the local loss and flow blockage make a complicated effect on the compressor flow field. The resultant fluid induced Alford's force has a negative value near the design condition and it reverses its sign as the flow coefficient increases and shows a very steep increase as the flow coefficient increases.

Prediction of ship resistance in level ice based on empirical approach

  • Jeong, Seong-Yeob;Choi, Kyungsik;Kang, Kuk-Jin;Ha, Jung-Seok
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.613-623
    • /
    • 2017
  • A semi-empirical model to predict ship resistance in level ice based on Lindqvist's model is presented. This model assumes that contact between the ship and the ice is a case of symmetrical collision, and two contact cases are considered. Submersion force is calculated via Lindqvist's formula, and the crushing and breaking forces are determined by a concept of energy consideration during ship and ice impact. The effect of the contact coefficient is analyzed in the ice resistance prediction. To validate this model, the predicted results are compared with model test data of USCGC Healy and icebreaker Araon, and full-scale data of the icebreaker KV Svalbard. A relatively good agreement is achieved. As a result, the presented model is recommended for preliminary total resistance prediction in advance of the evaluation of the icebreaking performance of vessels.

상용 Solid Modeler를 이용한 볼 엔드밀 가공의 절삭력 예측 (Prediction of Cutting Force in Ball-end mill Cutting using the Commercial Solid Modeler)

  • 이재종;박찬훈;최종근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.347-350
    • /
    • 2003
  • Many researches on the prediction of cutting forces of ball-end mil is have been achieved since before several decades ago. These kinds of researches have been concentrated on the study on how to make the prediction equations for the cutting forces based on 2-D cutting experimentation. The results of them were really good and impressive. But it's not proper to practical uses for industrial fields, because if sculptured surface were to be machined, then it would be very difficult to understand the complicated kinematical interaction between the sculptured surface and the flutes of a ball-end mill. So, we propose the method for solving these kind of problems using existed commercial CAD/CAM software; Unigraphics. Furthermore, the modification of tool path which is done off line is offered to increase the precision of cutting.

  • PDF

유한요소법을 이용한 조압연에서의 압하력 및 압연동력 예측 온라인 모델 개발 (Development of an On-Line Model for the Prediction of Roll Force and Roll Power in Roughing Mill by FEM)

  • 김성훈;곽우진;황상무
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2001년도 추계학술대회 논문집
    • /
    • pp.134-137
    • /
    • 2001
  • In this paper on-line model is derived from investigating via series of finite element process simulation. Some variables that little affect on non-dimensional parameters. ie. forward slip and torque factor. is extracted from composing on-line model Especially, this research focused on deriving on-line model which exactly predict roll force and roll power in the roughing mill process under small shape factor and small reduction ratio. The prediction accuracy of the proposed model is examined through comparison with predictions from a finite element process model

  • PDF

ME Z-map 모델을 이용한 NC 가공의 절삭력 예측 (Cutting Force Prediction in NC Machining Using a ME Z-map Model)

  • 이한울;고정훈;조동우
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.86-89
    • /
    • 2002
  • In NC machining, the ability to automatically generate an optimal process plan is an essential step toward achieving automation, higher productivity, and better accuracy. For this ability, a system that is capable of simulating the actual machining process has to be designed. In this paper, a milling process simulation system for the general NC machining was presented. The system needs first to accurately compute the cutting configuration. ME Z-map(Moving Edge node Z-map) was developed to reduce the entry/exit angle calculation error in cutting force prediction. It was shorn to drastically improve the conventional Z-map model. Experimental results applied to the pocket machining show the accuracy of the milling process simulation system.

  • PDF

엔드밀 가공의 절삭력 예측 및 실험 (Prediction and Experiments of Cutting Forces in End Milling)

  • 이신영;임용묵
    • 한국공작기계학회논문집
    • /
    • 제13권4호
    • /
    • pp.9-15
    • /
    • 2004
  • A reasonable analysis of cutting force in end milling may give much advantage to improvement of productivity and cutting tool life. In order to analyze cutting force, the cutting dynamics was modelled mathematically by using chip load, cutting geometry, and the relationship between cutting forces and the chip load. The specific cutting constants of the cutting dynamics model were obtained by average cutting forces, tool diameter, cutting speed, feed, axial depth, and radial depth of cut. The model is verified through comparisons of model predicted cutting forces with measured cutting forces obtained from machining experiments. The results showed good agreement and from that we could predict reasonably the cutting forces in end milling.

Powertrain에 의한 차량실내소음 예측을 위한 엔진 가진력 해석에 관한 연구 (Analysis of Excitation Forces for the Prediction of the Vehicle Interior Noise by the Powertrain)

  • 이주형;김성종;김태용;이상권
    • 한국소음진동공학회논문집
    • /
    • 제16권12호
    • /
    • pp.1244-1251
    • /
    • 2006
  • The objective of this paper is to get excitation forces of the engine at each of the brackets for the prediction of the vehicle interior noise by the powertrain. A powertrain geometry model is produced by CATIA and its FE model is made by MSC/Patran. A vibration mode analysis and a running mode analysis are experimentally implemented. After getting a satisfied MAC value by doing a correlation about a measured mode analysis value and analyzed value through MSC/Nastran software, all components are assembled through MSC/ADAMS software which is a dynamic analysis tool. We can predict the vibration of brackets which is the last points to occur the force of the engine combustion by analyzing the combustion force produced by engine mechanism.

보정신경망을 이용한 냉연 압하력 적중율 향상 (Improvement of roll force precalculation accuracy in cold mill using a corrective neural network)

  • 이종영;조형석;조성준;조용중;윤성철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1083-1086
    • /
    • 1996
  • Cold rolling mill process in steel works uses stands of rolls to flatten a strip to a desired thickness. At cold rolling mill process, precalculation determines the mill settings before a strip actually enters the mill and is done by an outdated mathematical model. A corrective neural network model is proposed to improve the accuracy of the roll force prediction. Additional variables to be fed to the network include the chemical composition of the coil, its coiling temperature and the aggregated amount of processed strips of each roll. The network was trained using a standard backpropagation with 4,944 process data collected from no.1 cold rolling mill process from March 1995 through December 1995, then was tested on the unseen 1,586 data from Jan 1996 through April 1996. The combined model reduced the prediction error by 32.8% on average.

  • PDF

실가공형 CAM 시스템의 구현을 위한 가공면 예측 및 실험검증 (Machined Surface Prediction and Experimental Verification for Virtual Machining CAM System)

  • 정대혁;서석환
    • 한국CDE학회논문집
    • /
    • 제4권3호
    • /
    • pp.247-258
    • /
    • 1999
  • With the contemporary CAD/CAM system, where the tool path is generated and verified purely based on the geometric operation, geometric accuracy of the machined surface cannot be guaranteed dut to the cutting mechanics, meaning that the cutting mechanics should be incorporated in some fashion. In this paper, we incorporate the instantaneous cutting force and the tool deflection phenomena in predicting the machined surface for the finish-cut and milling operation. For the given NC dat including cutting conditions, the developed algorithm computes cutting force and deflection amount along the tool trajectory, and outputs the 3D graphic model of the machined surface together with error analysis. The validity and accuracy of the presented method has been tested by the actual cutting experiments. Experimental results and accuracy enhancement method together with implementing architecture of the VMCS (Virtual Machining CAM System) are discussed in the paper.

  • PDF