• Title/Summary/Keyword: Force Identification

Search Result 360, Processing Time 0.029 seconds

Quadrant Protrusion error Modeling Through the Identification of Friction (마찰력 규명을 통한 상한절환 오차 모델링)

  • 김민석
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.371-376
    • /
    • 1999
  • Stick-slip friction is present to some degree in almost all actuators and mechanisms and is often responsible for performance limitations. Simulation of stick-slip friction is difficult because of strongly nonlinear behavior in the vicinity of zero velocity. A straightforward method for representing and simulating friction effects is presented. True zero velocity sticking is represented without equation reformulation or the introduction of numerical stiffness problems. Stick-slip motion is investigated experimentally, and the fundamental characteristics of the stick-slip motion are clarified. Based on these experimental results, the characteristics of static in the period of stick and kinetic friction in the period of slip are studied concretely so as to clarify the stick-slip process.

  • PDF

A Study On Prediction Of Three Dimensional Cutting Forces According To The Cutting Conditions (3차원 절삭가공시 절삭력 예측에 관한 연구)

  • 신근하
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1995.03a
    • /
    • pp.152-157
    • /
    • 1995
  • In Turning It is good selection of cutting condition and cutting tools that influence upon the accuracy of dimension manufacturing efficiency and extension of tool life. Among them especially the identification of cutting force due to the change of cutting conditions which exerts a great influence on the turning is very important. In this study the cutting resistance due to the change of cutting conditions was caculated by using the energy method and good agreement in shown between theoritical and experimental results which were tested for the cutting resistance at the cemented carbide cutting tools with workpieces of SM20C and SM 45C.

  • PDF

Experimental Investigation on the Characteristics of Dynamic Masses of Korean-Seated Postures (한국인의 앉은 자세에 대한 동적 질량의 실험적 연구)

  • 박용화;정완섭
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1017-1021
    • /
    • 2000
  • This paper addresses experimental results carried out to investigate the characteristics of dynamic mass for Korean. Vertical seat vibration in the frequency range of 0.5-30 Hz was applied to a seated Korean male subject. To examine the intra-variable effects on dynamic mass, five different postures and three different vibration excitation levels were considered. The applied acceleration and transmitted force to the hip of the seated subject were measured simultaneously. Detailed experimental results of measured dynamic mass are illustrated for each posture and/or vibration excitation level. Maximum peaks of around 5 Hz were observed for most experimental cases. They are found to allow the identification of dynamic characteristics of Korean seated body for various real vibration environments. Furthermore, they are expected to be very useful in designing new seats for automotive and railway vehicles and in improving their vibration ride duality.

  • PDF

A study on the identification of dynamic characteristics of tennis racket by acoustic intensity method (음향 인텐시터법을 이용한 테니스 라켓의 동특성에 관한 연구)

  • 오재응;이유엽;염성하
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.5
    • /
    • pp.601-610
    • /
    • 1986
  • The acoustic intensity in the very near field of a vibrating surface reveals information about the location of sound sources and sinks. A system model of tennis racket was developed from simultaneous measurement of excitation force, surface vibration and the near field sound pressure. The characteristics of structural dynamics were obtained by standard experimental modal analysis techniques while the sound radiation characteristics were determined by estimating the acoustic intensity. In this paper, the information about vibration behviour was obtained by acoustic intensity method and some, experiments for verification were carried out. Close correlation was found between experimentally determined acoustic intensity and vibration mode patterns of the tennis racket.

A Study on the Air Traffic Situation Variables which Influence the Job Performance of Military Air Traffic Controllers (군관제사의 직무 수행과 항공교통상황 변인의 영향 연구)

  • Sin, Hyon-Sam;Jang, Jung-Ha;Ahn, Jae-Mo
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.20 no.1
    • /
    • pp.19-25
    • /
    • 2012
  • The air traffic situation variables were emphasized in this research to review the awareness level of job performance of military air traffic controllers in application of air traffic situation variables such as detection of aircraft identification, type of aircraft, position ,speed, altitude, determination of separation between departing and arriving in-trail aircraft, physical airport conditions, adverse weather conditions, NAVAID outage and ATC facilities' operational status. In this respect, This study was conducted under the auspice of ATC facility operating agencies and devoting air force air traffic controller's participation by answering the questionnaires from nine radar approach control facilities and other air traffic control towers.

Parameter Identification and Nonlinear Seismic Analysis of Soil-Structure Interaction System (지반-구조물 상호작용계의 계수추정 및 비선형 지진응답해석)

  • 윤정방
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.265-272
    • /
    • 1997
  • This paper presents the result of an international cooperative research on the post-correlation analysis of forced vibration tests and the prediction of earthquake responses of a large-scale seismic test structure. Through the post-correlation analysis, the properties of the soil layers are revised so that the best correlation in the responses may be obtained compared with the measured force vibration test data. Utilizing the revised soil properties as the initial linear values, the seismic responses are predicted for an earthquake using the equivalent linearlization technique based on the specified strain dependent characteristics of the shear moduli and damping ratios. It has been found that the predicted responses by the equivalent nonlinear procedure are in excellent agreement with the observed responses, which those using the initial properties are fairly off from the measured results.

  • PDF

The Study of Risk Acceptance Criteria for Railway System (철도시스템의 위험도 허용 기준 개발에 관한 연구)

  • Kim, Young-Sang;Maeng, Hee-Young;Wang, Jong-Bae
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.796-805
    • /
    • 2008
  • Safety Management of Korean railway industry has been rapidly changed into a risk-based approach adopted by developed countries since Railway Safety Act 2004, Rolling Stock Risk Assessment Guidance and its following regulations came into force. The fundamental requirements for the risk-based safety management is to carry out a systematic hazard identification and quantified risk analyses including cost-benefit analyses, but there has been rare a serious discussion over risk acceptance criteria and value of life in order to be able to judge the results of risk analyses and carry out cost-benefit analyses. This study presents the results of a review of risk acceptance criteria and value of life which may be adoped to Korean railway industry through the analyses with comparison of risk accepatnce principles and risk accepatnce criteria which have been already applied to other countries or other railway operators.

  • PDF

System Identification of the Three Story Building Structure with a Controller (제어기가 설치된 3층 건물의 시스템 식별)

  • 주석준
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.203-211
    • /
    • 1999
  • Threr are several methods in protecting the building structures from dynamic loads such as an earthquake and a wind. Among them applying a control force to the building structure is one of the methods to decrease the vibration. The most important and difficult problem in the active control is to obtain the mathematical model of the building structure with a controller. the effective active controller can be designed from the exact model of the system In this paper the three story test building with an active mass driver is identified experimentally. the system matrices corresponding to the experimental building are found and verified with the experimentally-obtained transfer functions and responses efficiently.

  • PDF

Noise and Vibration Analysis of Rotary Compressor by SEA (SEA에 의한 회전 압축기의 소음 진동 해석)

  • 황선웅;안병하;정의봉;김규환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.964-968
    • /
    • 2003
  • Hermetic rotary compressor is one of the most Important components for air conditioning system since it has a great effect on both the performance and the noise and vibration of He system. Noise and vibration of rotary compressor is occurred due to gas pulsation during compression process and unbalanced dynamic force. In order to reduce noise and vibration. it is necessary to identify sources of noise and vibration and effectively control then. Many approaches have been tried to identify noise sources of compressor. However, compressor noise source identification has proven to be difficult since the characteristics of compressor noise are complicated due to the interaction of the compressor parts and gas pulsation. In this work, Statistical Energy Analysis has been used to trace the energy flow in the compressor and identify transmission paths from the noise source to the sound field.

  • PDF

Detection and quantification of structural damage under ambient vibration environment

  • Yun, Gun Jin
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.425-448
    • /
    • 2012
  • In this paper, a new damage detection and quantification method has been presented to perform detection and quantification of structural damage under ambient vibration loadings. To extract modal properties of the structural system under ambient excitation, natural excitation technique (NExT) and eigensystem realization algorithm (ERA) are employed. Sensitivity matrices of the dynamic residual force vector have been derived and used in the parameter subset selection method to identify multiple damaged locations. In the sequel, the steady state genetic algorithm (SSGA) is used to determine quantified levels of the identified damage by minimizing errors in the modal flexibility matrix. In this study, performance of the proposed damage detection and quantification methodology is evaluated using a finite element model of a truss structure with considerations of possible experimental errors and noises. A series of numerical examples with five different damage scenarios including a challengingly small damage level demonstrates that the proposed methodology can efficaciously detect and quantify damage under noisy ambient vibrations.