• Title/Summary/Keyword: Force Display

Search Result 380, Processing Time 0.023 seconds

Research about muscle ache curer design development for hospital (병원용 근육통증 치료기 디자인 개발에 관한 연구)

  • Oh, Sung-Jin
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.856-859
    • /
    • 2006
  • Patient's position who muscle ache curer for hospital undergoes person entrance and treatment that take advantage of biological, physical force of low frequency and it is equipment that treat body muscle ache, but use equipment when use patient into compensation in hospital specially, that consider everybody is important first of all. This research question investigation with market survey of old product enforce because preference degree reflected officer a result and apply opinion tuned with product development connection engineers on DESIGN direction via typical product design development process close. This curer development research analyzed data involved directly taking advantage of FGI techniques with literature investigation collection. Investigation examined laying stress on muscle ache curer for hospital and a nurse than a doctor answered on question and purchase selection criterion or price portion to user focus. Direct market survey research that see item indicated by competition four provision shortcomings consequently in NEW MODEL development hereafter supplement and expectation. by contributing greatly in M/S security strategy hereafter because design development consisted for side that improve.

  • PDF

LC Alignment Behaviors at Rubbed Films of Brush Polyimides;Perpendicular LC Alignment versus Parallel LC Alignment

  • Lee, Taek-Joon;Hahm, Seok-Gyu;Lee, Seung-Woo;Chae, Bok-Nam;Lee, Seong-June;Kim, Seung-Bin;Jung, Jin-Chul;Ree, Moon-Hor
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.766-768
    • /
    • 2004
  • Rubbed films of a series of poly(p-phenylene 3,6-bis(4-(n-alkyloxy)phenyloxy)pyromellitimide)s (Cn-PMDA-PDA PIs), which are well-defined brush PIs composed of two aromatic-aliphatic bristles per repeat unit of a fully rodlike backbone, were investigated in detail using atomic force microscopy (AFM), optical retardation analysis and linearly polarized infrared (IR) spectroscopy in order to elucidate their surface morphology and molecular orientation. The liquid crystal (LC) alignment behavior and the anchoring energy of LC molecules on the rubbed films were also determined.

  • PDF

Analysis on Current Characteristics According to Injection Method and Driving Waveform in Electrophoretic-Type E-Paper Display (전기영동형 전자종이 디스플레이에서 전자잉크의 주입 방법 및 구동파형에 따른 전류 특성 분석)

  • Lee, Joo-Won;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.386-392
    • /
    • 2020
  • In this study, the drift current characteristics of charged particles are analyzed for panels fabricated by varying the waveform biasing of the active particle loading method (APLM), which is a method driven by the electrophoretic principle of loading charged particles into a cell of a barrier rib-type electronic paper. We prepare 3 panels using APLM and 1 panel without APLM. The waveform of APLM uses square wave and ramp wave, and the step voltage wave is applied to the driving voltage. The drift currents measured from the square wave and ramp wave with the same period applied by APLM are 4.872 µC and 5.464 µC, respectively, and the ramp wave is shown to be relatively advantageous for loading charged particles that have a large q/m. The time-current curve results confirm that the abrupt movement of charged particles is occurring. When the step form wave signal with a short time of 1s is first applied, initial large movement of the charged particles is confirmed to occur in all samples, which is understood as the effect of applying the voltage necessary to remove the imaging force. The results of this study are expected to improve the loading of charged particles into the electronic paper cell, driven by the electrophoretic principle and optimization of the driving conditions.

Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites

  • Letti, Camila J.;Costa, Karla A.G.;Gross, Marcos A.;Paterno, Leonardo G.;Pereira-da-Silva, Marcelo A.;Morais, Paulo C.;Soler, Maria A.G.
    • Advances in nano research
    • /
    • v.5 no.3
    • /
    • pp.215-230
    • /
    • 2017
  • The development of hybrid systems comprising nanoparticles and polymers is an opening pathway for engineering nanocomposites exhibiting outstanding mechanical, optical, electrical, and magnetic properties. Among inorganic counterpart, iron oxide nanoparticles (IONP) exhibit high magnetization, controllable surface chemistry, spintronic properties, and biological compatibility. These characteristics enable them as a platform for biomedical applications and building blocks for bottom-up approaches, such as the layer-by-layer (LbL). In this regard, the present study is addressed to investigate IONP synthesised through co-precipitation route (average diameter around 7 nm), with either positive or negative surface charges, LbL assembled with sodium sulfonated polystyrene (PSS) or polyaniline (PANI). The surface and internal morphologies, and electrochemical properties of these nanocomposites were probed with atomic force microscopy, UV-vis and Raman spectroscopy, scanning electron microscopy, cross-sectional transmission electron microscopy, and electrochemical measurements. The nanocomposites display a globular morphology with IONP densely packed while surface dressed by polyelectrolytes. The investigation of the effect of thermal annealing (300 up to $600^{\circ}C$) on the oxidation process of IONP assembled with PSS was performed using Raman spectroscopy. Our findings showed that PSS protects IONP from oxidation/phase transformation to hematite up to $400^{\circ}C$. The electrochemical performance of nanocomposite comprising IONP and PANI were investigated in $0.5mol{\times}L^{-1}$ $Na_2SO_4$ electrolyte solution by cyclic voltammetry and chronopotentiometry. Our findings indicate this structure as promising candidate for potential application as electrodes for supercapacitors.

Comparison of Micro Trench Machining Characteristics with Nonferrous Metal and Polymer using Single Diamond Cutting Tool (단결정 다이아몬드 공구에 의한 비철금속과 폴리머 소재의 마이크로 트렌치 가공특성 비교)

  • Choi, Hwan-Jin;Jeon, Eun-Chae;Choi, Doo-Sun;Je, Tae-Jin;Kang, Myung-Chang
    • Journal of Powder Materials
    • /
    • v.20 no.5
    • /
    • pp.355-358
    • /
    • 2013
  • Micro trench structures are applied in gratings, security films, wave guides, and micro fluidics. These micro trench structures have commonly been fabricated by micro electro mechanical system (MEMS) process. However, if the micro trench structures are machined using a diamond tool on large area plate, the resulting process is the most effective manufacturing method for products with high quality surfaces and outstanding optical characteristics. A nonferrous metal has been used as a workpiece; recently, and hybrid materials, including polymer materials, have been applied to mold for display fields. Thus, the machining characteristics of polymer materials should be analyzed. In this study, machining characteristics were compared between nonferrous metals and polymer materials using single crystal diamond (SCD) tools; the use of such materials is increasing in machining applications. The experiment was conducted using a square type diamond tool and a shaper machine tool with cutting depths of 2, 4, 6 and 10 ${\mu}m$ and a cutting speed of 200 mm/s. The machined surfaces, chip, and cutting force were compared through the experiment.

Study of Properties of HfO2 thin film for Low Power Mobile Information Device (저전력 휴대용 통신단말을 위한 이온빔 처리된 HfO2 박막의 특성 연구)

  • Kim, Won Bae;Lee, Ho Young
    • Journal of Satellite, Information and Communications
    • /
    • v.10 no.3
    • /
    • pp.89-93
    • /
    • 2015
  • Ion-beam irradiation(IB) on $HfO_2$ surface induced high-performance liquidcrystal(LC) driving at a 1-V threshold with vertical alignment of liquid crystals(LC). The high-k materials Atomic layer deposition was used to obtain LC orientation on ultrathin and high-quality films of $HfO_2$ layers. To analyze surface morphological transition of $HfO_2$ which can act as physical alignment effect of LC, atomic force microscopy images are employed with various IB intensities. The contact angle was measured to elucidate the mechanism of vertical alignment of LC on $HfO_2$ with IB irradiation. Contact angle measurement show the surface energy changes via IB intensity increasing.

Characteristics of organic electroluminescent devices using conducting polymer materials with buffer layers (전도성 고분자를 Buffer층으로 사용한 유기 발광 소자의 제작과 특성 연구)

  • 이호식;박종욱;김태완;강도열
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1998.11a
    • /
    • pp.125-128
    • /
    • 1998
  • Electroluminescent(EL) devices based on organic thin films have attracted lots of interests in large-area light-emitting display. One of the problems of such device is a lifetime, where a degradation of the cell is possibly due to an organic layer's thickness, morphology and interface with electrode. In this study, light-emitting organic electroluminescent devices were fabricated using Alq$_3$(8-hydroxyquinolinate aluminum) and TPD(N,N'-diphenyl-N,N'-bis(3-methylphenyl)-[1-1'-biphenyl]-4,4'-diamine).Where Alq$_3$ is an electron-transport and emissive layer, TPD is a hole-transport layer. The cell structure is ITO/TPD/Alq$_3$/Al and the cell is fabricated by vacuum evaporation method. In a measurement of current-voltage characteristics, we obtained a turn-on voltage at about 9 V. And we used other buffer layer of PPy(Polypyrrole) with ITO/PPy/TPD/Alq$_3$/Al structure. We observed a surface morphology by AFM(Atomic Force Microscopy), UV/visible absorption spectrum, and PL(Photoluminescence) spectrum. We obtained the UV/visible absorption peak at 358nm in TPD and at 359nm in Alq$_3$, and at 225nm and the PL peaks at 410nm in TPD and at 510nm in Alq$_3$ and at 350nm. We also studied EL spectrum in the cell structure of ITO/TPD/Alq$_3$/Al and ITO/PPy/TPD/Alq$_3$/Al and we observed the EL spectrum peak at 510nm from our cell

  • PDF

Effect of growth temperature on the growth and properties of carbon-nanotube prepared by Hot-filamnet PECVD method (Hot-filament 화학기상 증착법으로 성장시킨 성장온도에 따른 탄소나노튜브의 성장 및 특성)

  • Kim, Jung-Tae;Park, Yong-Seob;Kim, Hyung-Jin;Lee, Sung-Uk;Choi, Eun-Chang;Hong, Byung-You
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.120-120
    • /
    • 2006
  • 탄소나노튜브는 nm급의 크기에 높은 전기전도도, 열전도 효율, 감한 기계적 강도 등의 장점을 가지며, FED(Field Emission Display), 극미세 전자 스위칭 소자, SET(Single Electron Transistor), AFM(Atomic Force Microscope) tip등 여러 분야로의 응용을 연구하고 있다. 본 연구에서는 탄소나노튜브를 Si 웨이퍼 위에 Ni/Ti 금속층을 촉매층으로 사용하고, 암모니아($NH_3$)가스와 아세틸렌 ($C_2H_2$)가스를 각각 희석가스와 성장원으로 사용하여 합성하였다. 탄소나노튜브의 성장은 Hot filament 화학기상증측(HFPECVD) 방식을 사용하였으며, 이 방법은 다량의 합성, 높은 균일성, 좋은 정렬 특성등의 장점을 가진다. 성장 온도는 탄소나노튜브의 성장 특성을 변화시키는 중요한 요소이다. 성장 온도에 따라 수직적 성장, 성장 밀도등의 특성 변화를 관찰하였다. 성장된 탄소나노튜브층 성분 분석은 에너지 분산형 X-선 측정기(EDS)를 통해 관찰하였고, 끝단에 촉매층이 존재하는 30~50 nm 폭을 가진 다중벽 탄소나노튜브를 고배율 투과전자현미경(HRTEM) 분석을 통해 관찰하였다. 전계방사 주사전자현미경(FESEM) 분석을 동해 1~3${\mu}m$의 길이를 가진 탄소나노튜브가 높은 밀도로 성장된 것을 확인하였다.

  • PDF

Physical Properties of Fe Particles Fine-dispersed in AlN Thin Films (Fe 입자를 미세 분산 시킨 AlN 박막의 물리적 성질)

  • Han, Chang-Suk;Kim, Jang-Woo
    • Korean Journal of Materials Research
    • /
    • v.21 no.1
    • /
    • pp.28-33
    • /
    • 2011
  • This paper describes the fabrication of AlN thin films containing iron and iron nitride particles, and the magnetic and electrical properties of such films. Fe-N-Al alloy films were deposited in Ar and $N_2$ mixtures at ambient temperature using Fe/Al composite targets in a two-facing-target DC sputtering system. X-ray diffraction results showed that the Fe-N-Al films were amorphous, and after annealing for 5 h both AlN and bcc-Fe/bct-$FeN_x$ phases appeared. Structure changes in the $FeN_x$ phases were explained in terms of occupied nitrogen atoms. Electron diffraction and transmission electron microscopy observations revealed that iron and iron nitride particles were randomly dispersed in annealed AlN films. The grain size of magnetic particles ranged from 5 to 20 nm in diameter depending on annealing conditions. The saturation magnetization as a function of the annealing time for the $Fe_{55}N_{20}Al_{25}$ films when annealed at 573, 773 and 873 K. At these temperatures, the amount of iron/iron nitride particles increased with increasing annealing time. An increase in the saturation magnetization is explained qualitatively in terms of the amount of such magnetic particles in the film. The resistivity increased monotonously with decreasing Fe content, being consistent with randomly dispersed iron/iron nitride particles in the AlN film. The coercive force was evaluated to be larger than $6.4{\times}10^3Am^{-1}$ (80 Oe). This large value is ascribed to a residual stress restrained in the ferromagnetic particles, which is considered to be related to the present preparation process.

Characteristics of Silicon Nitride Deposited Thin Films on IT Glass by RF Magnetron Sputtering Process (RF Magnetron Sputtering공정에 의해 IT유리에 적층시킨 Silicon Nitride 박막의 특성)

  • Son, Jeongil;Kim, Gwangsoo
    • Korean Journal of Materials Research
    • /
    • v.30 no.4
    • /
    • pp.169-175
    • /
    • 2020
  • Silicon nitride thin films are deposited by RF (13.57 MHz) magnetron sputtering process using a Si (99.999 %) target and with different ratios of Ar/N2 sputtering gas mixture. Corning G type glass is used as substrate. The vacuum atmosphere, RF source power, deposit time and temperature of substrate of the sputtering process are maintained consistently at 2 ~ 3 × 10-3 torr, 30 sccm, 100 watt, 20 min. and room temperature, respectively. Cross sectional views and surface morphology of the deposited thin films are observed by field emission scanning electron microscope, atomic force microscope and X-ray photoelectron spectroscopy. The hardness values are determined by nano-indentation measurement. The thickness of the deposited films is approximately within the range of 88 nm ~ 200 nm. As the amount of N2 gas in the Ar:N2 gas mixture increases, the thickness of the films decreases. AFM observation reveals that film deposited at high Ar:N2 gas ratio and large amount of N2 gas has a very irregular surface morphology, even though it has a low RMS value. The hardness value of the deposited films made with ratio of Ar:N2=9:1 display the highest value. The XPS spectrum indicates that the deposited film is assigned to non-stoichiometric silicon nitride and the transmittance of the glass with deposited SiO2-SixNy thin film is satisfactory at 97 %.