Browse > Article
http://dx.doi.org/10.12989/anr.2017.5.3.215

Synthesis, morphology and electrochemical applications of iron oxide based nanocomposites  

Letti, Camila J. (Instituto de Fisica, Universidade de Brasilia)
Costa, Karla A.G. (Instituto de Quimica, Universidade de Brasilia)
Gross, Marcos A. (Instituto de Quimica, Universidade de Brasilia)
Paterno, Leonardo G. (Instituto de Quimica, Universidade de Brasilia)
Pereira-da-Silva, Marcelo A. (Instituto de Fisica de Sao Carlos USP)
Morais, Paulo C. (Instituto de Fisica, Universidade de Brasilia)
Soler, Maria A.G. (Instituto de Fisica, Universidade de Brasilia)
Publication Information
Advances in nano research / v.5, no.3, 2017 , pp. 215-230 More about this Journal
Abstract
The development of hybrid systems comprising nanoparticles and polymers is an opening pathway for engineering nanocomposites exhibiting outstanding mechanical, optical, electrical, and magnetic properties. Among inorganic counterpart, iron oxide nanoparticles (IONP) exhibit high magnetization, controllable surface chemistry, spintronic properties, and biological compatibility. These characteristics enable them as a platform for biomedical applications and building blocks for bottom-up approaches, such as the layer-by-layer (LbL). In this regard, the present study is addressed to investigate IONP synthesised through co-precipitation route (average diameter around 7 nm), with either positive or negative surface charges, LbL assembled with sodium sulfonated polystyrene (PSS) or polyaniline (PANI). The surface and internal morphologies, and electrochemical properties of these nanocomposites were probed with atomic force microscopy, UV-vis and Raman spectroscopy, scanning electron microscopy, cross-sectional transmission electron microscopy, and electrochemical measurements. The nanocomposites display a globular morphology with IONP densely packed while surface dressed by polyelectrolytes. The investigation of the effect of thermal annealing (300 up to $600^{\circ}C$) on the oxidation process of IONP assembled with PSS was performed using Raman spectroscopy. Our findings showed that PSS protects IONP from oxidation/phase transformation to hematite up to $400^{\circ}C$. The electrochemical performance of nanocomposite comprising IONP and PANI were investigated in $0.5mol{\times}L^{-1}$ $Na_2SO_4$ electrolyte solution by cyclic voltammetry and chronopotentiometry. Our findings indicate this structure as promising candidate for potential application as electrodes for supercapacitors.
Keywords
nanocomposite; iron oxide nanoparticles; nanostructured electrodes; oxidation; layer-by-layer; polyaniline; sulfonated polystyrene; supercapacitors;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Alcantara, G.B., Paterno, L.G., Afonso, A.S., Faria, R.C., Pereira-da-Silva, M.A., Morais, P.C. and Soler, M.A.G. (2011a), "Adsorption of cobalt ferrite nanoparticles within layer-by-layer films: a kinetic study carried out using quartz crystal microbalance", Phys. Chem. Chem. Phys., 13(48), 21233-21242.   DOI
2 Qu, F. and Morais, P.C. (2000), "An oxide semiconductor nanoparticle in an aqueous medium: A surface charge density investigation", J. Phys. Chem. B, 104(22), 5232-5236.   DOI
3 Santos, J.G., Souza, J.R., Letti, C.J., Soler, M.A.G., Morais, P.C., Pereira-da-Silva, M.A. and Paterno, L.G. (2014), "Iron oxide nanostructured electrodes for detection of copper (II) ions", J. Nanosci. Nanotechnol., 14(9), 6614-6623.   DOI
4 Schwertmann, U. and Cornell, R.M. (1991), Iron Oxides in the Laboratory: Preparation and Characterization, VCH Publishers, New York, NY, USA.
5 Alcantara, G.B., Paterno, L.G., Fonseca, F.J., Morais, P.C. and Soler, M.A.G. (2011b), "Morphology of cobalt ferrite nanoparticle-polyelectrolyte multilayered nanocomposites", J. Magn. Magn. Mater., 323(10), 1372-1377.   DOI
6 Soler, M.A.G., Silva, S.W., Garg, V.K, Oliveira, A.C., Azevedo, R.B., Pimenta, A.C.M., Lima, E.C.D. and Morais, P.C. (2005), "Surface passivation and characterization of cobalt-ferrite nanoparticles", Surf. Sci., 575(1), 12-16.   DOI
7 Seo, S., Lee, S. and Park, Y.P. (2016), "Automatic layer-by-layer spraying system for functional thin film coatings", Rev. Sci. Instrum., 87(3), 036110.   DOI
8 Soler, M.A.G. and Fanyao, Q. (2012), "Raman Spectroscopy of Iron Oxide Nanoparticles", In: Raman Spectroscopy for Nanomaterials Characterization, Springer-Verlag, Berlin, Germany, pp. 379-417.
9 Soler, M.A.G. and Paterno, L.G. (2017), "Magnetic Nanoparticles", In: Nanostructures, (O.N. Oliveira, Jr., M. Ferreira, A.L. Da Roz and F.L. Leite), Elsevier, pp. 147-186.
10 Soler, M.A.G., Lima, E.C.D., Silva, S.W., Melo, T.F.O., Pimenta, A.C.M., Sinnecker, J.P., Azevedo, R.B., Garg, V.K. Oliveira, A.C., Novak, M.A. and Morais, P.C. (2007), "Aging investigation of cobalt ferrite nanoparticles in low pH magnetic fluid", Langmuir, 23(19), 9611-9617.   DOI
11 Soler, M.A.G., Lima, E.C.D., Nunes, E.S., Silva, F.L.R., Oliveira, A.C., Azevedo, R.B. and Morais, P.C. (2011), "Spectroscopic study of maghemite nanoparticles surface-grafted with DMSA", J. Phys. Chem. A, 115(6), 1003-1008.   DOI
12 Soler, M.A.G., Paterno, L.G., Sinnecker, J.P., Wen, J.G., Sinnecker, E.H.C.P., Neumann, R.F., Bahiana, M., Novak, M.A. and Morais, P.C. (2012a), "Assembly of ${\gamma}$-$Fe_2O_3$/polyaniline nanofilms with tuned dipolar interaction", J. Nanopart. Res., 14(3), 653.   DOI
13 Soler, M.A., Paterno, L.G. and Morais, P.C. (2012b), "Layer-by-layer assembly of magnetic nanostructures", J. Nanofluids, 1(2), 101-119.   DOI
14 Ariga, K., Hill, J.P. and Ji, Q. (2007), "Layer-by-layer assembly as a versatile bottom-up nanofabrication technique for exploratory research and realistic application", Phys. Chem. Chem. Phys., 9(19), 2319-2340.   DOI
15 Alcantara, G.B., Paterno, L.G., Fonseca, F.J., Pereira-da-Silva, M.A., Morais, P.C. and Soler, M.A.G. (2013a), "Dielectric properties of cobalt ferrite nanoparticles in ultrathin nanocomposite films", Phys. Chem. Chem. Phys., 15(45), 19853-19861.   DOI
16 Alcantara, G.B., Paterno, L.G., Fonseca, F.J., Pereira-da-Silva, M.A., Morais, P.C. and Soler, M.A.G. (2013b), "Layer-by-layer assembled cobalt ferrite nanoparticles for chemical sensing", J. Nanofluids, 2(3), 175-183.   DOI
17 Alivisatos, A.P. (1996), "Semiconductor clusters, nanocrystals, and quantum dots", Science, 271, 933-937.   DOI
18 Aroutiounian,V.M, Arakelyan, V.M., Shahnazaryan, G.E., Aleksanyan, M.S., Hernadi, K., Nemeth, Z., Berki, P., Papa, Z., Toth, Z. and Forro, L. (2015), "The ethanol sensors made from ${\alpha}$-$Fe_2O_3$ decorated with multiwall carbon nanotubes", Adv. Nano Res., Int. J., 3(1), 1-11.   DOI
19 Ayyappan, S., Mahadevan, S., Chandramohan, P., Srinivasan, M.P., Philip, J. and Raj, B. (2010), "Influence of Co2+ ion concentration on the size, magnetic properties, and purity of $CoFe_2O_4$ spinel ferrite nanoparticles", J. Phys. Chem. C, 114(14), 6334-6341.   DOI
20 Balazs, A.C., Emrick, T. and Russel, T.P. (2006), "NNanoparticle polymer composites: Where two small worlds meet", Science, 314(5802), 1107-1110.   DOI
21 Toulemon, D., Rastei, M.V., Schmool, D., Garitaonandia, J.S., Lezama, L., Cattoen, X., Begin-Colin, S. and Pichon, B.P. (2016), "Enhanced collective magnetic properties induced by the controlled assembly of iron oxide nanoparticles in chains", Adv. Funct. Mater., 26(15), 2454-2462.   DOI
22 Suda, M., Miyazaki, Y., Hagiwara, Y., Sato, O., Shiratori, S. and Einaga, Y. (2005), "Photoswitchable magnetic layer-by-layer films consisting of azobenzene derivatives and iron oxide nanoparticles", Chem. Lett., 34(7), 1028-1029.   DOI
23 Sun, Z., Du, J., Yan, L., Chen, S., Yang, Z. and Jing, C. (2016), "Multifunctional $Fe_3O_4$@$SiO_2$- Au satellite structured SERS probe for charge selective detection of food dyes", ACS Appl. Mater. Interfaces, 8(5), 3056-3062.   DOI
24 Thuy, T.T. (2012), Next Generation Magnetic Nanoparticles for Biomedical Applications. Magnetic Nanoparticles from Fabrication to Clinical Applications, (Edited by N.T.K. Thanh), Taylor & Francis Group, Boca Raton, FL, USA.
25 Trahms, L. (2010), "Biomedical Applications of Magnetic Nanoparticles", In: Colloidal Mangetic Fluids, (S. Odenbach Ed.), Verlag, Berlim Weidelberg, pp. 328-358.
26 Trudel, S., Crozier, E.D., Gordon, R.A., Budnik, P.S. and Hill, R.H. (2011), "X-ray absorption fine structure study of amorphous metal oxide thin films prepared by photochemical metalorganic deposition", J. Solid. State. Chem., 184(5), 1025-1035.   DOI
27 Bruchez, M. Jr., Moronne, M., Gin, P., Weiss, S. and Alivisatos, A.P. (1998), "Semiconductor nanocrystals as fluorescent biological labels", Science, 281(5385), 2013-2016.   DOI
28 Begin-Colin, S. and Felder-Flesch, D. (2012), "Functionalizsation of Magnetic Iron Oxide Nanoparticles", In: Magnetic Nanoparticles from Fabrication to Clinical Applications, (N.T.K. Thank Ed.), CRC Press Taylor & Francis Group, Boca Raton, FL, USA, pp. 151-191.
29 Blums, E., Cebers, A. and Maiorov, M.M. (1985), Magnetic Fluids, Walter de Gruyter, Berlin, Germany.
30 Bourgeois, F., Gergaud, P., Renevier, H., Leclere, C. and Feuillet, G. (2013), "Low temperature oxidation mechanisms of nanocrystalline magnetite thin film", J. Appl. Phys., 113(1), 013510.   DOI
31 Butt, F.A. and Jafri, S.M.M. (2015), "Effect of nucleating agents and stabilisers on the synthesis of Iron-Oxide Nanoparticles-XRD analysis", Adv. Nano Res., Int. J., 3(3), 169-176   DOI
32 Chen, Y.P., Zou, M., Qi, C., Xie, M.-X., Wang, D.-N., Wang, Y.-F., Xue, Q., Li, J.-F. and Chen, Y. (2013), "Immunosensor based on magnetic relaxation switch and biotin-streptavidin system for the detection of kanamycin in milk", Biosens. Bioelectron., 39(1), 112-117.   DOI
33 Chourpa, I., Douziech-Eyrolles, L., Ngaboni-Okassa, L., Fouquenet, J.-F., Cohen-Jonathan, S., Souce, M., Marchais, H. and Dubois, P. (2005), "Molecular composition of iron oxide nanoparticles, precursors for magnetic drug targeting, as characterized by confocal Raman microspectroscopy", Analyst, 130(10), 1395-1403.   DOI
34 Correa-Duarte, M.A., Giersig, M., Kotov, N.A. and Liz-Marzan, L.M. (1998), "Control of Packing Order of Self-Assembled Monolayers of Magnetite Nanoparticles with and without $SiO_2$ Coating by Microwave Irradiation", Langmuir, 14(22), 6430-6435.   DOI
35 Ferreira, M. and Rubner, M.F. (1995), "Molecular-level processing of conjugated polymers. 1. Layer-bylayer manipulation of conjugated polyons", Macromolecules, 28(21), 7107-7114.   DOI
36 Viali, W.R., Alcantara, G.B., Sartoratto, P.P.C., Soler, M.A.G., Mosiniewicz-Szablewska, E., Andrzejewski, B. and Morais, P.C. (2010), "Investigation of the molecular surface coating on the stability of insulating magnetic oils", J. Phys. Chem. C, 114(1), 179-188.   DOI
37 da Silva, S.W., Melo, T., Soler, M.A.G., Da Silva, M.F., Lima, E.C.D. and Morais, P.C. (2003), "Stability of citrate-coated magnetite and cobalt-ferrite nanoparticles under laser irradiation: a Raman spectroscopy investigation", IEEE Trans. Magn., 39(5), 2645-2647.   DOI
38 Dalpozzo, R. (2015), "Magnetic nanoparticle supports for asymmetric catalysts", Green Chem., 17(7), 3671-3686.   DOI
39 Decher, G., Hong, J.D. and Schmitt, J. (1992), "Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces", Thin Sol. Films, 210, 831-835.
40 Dey, S., Mohanta, K. and Pal, A.J. (2010), "Magnetic-field-assisted layer-by-layer electrostatic assembly of ferromagnetic nanoparticles", Langmuir, 26(12), 9627-9631.   DOI
41 Gao, Z., Ma, T., Zhao, E., Docter, D., Yang, W., Stauber, R.H. and Gao, M. (2016), "Small is smarter: nano MRI contrast agents-advantages and recent achievements", Small, 12(5), 556-576.   DOI
42 Grassian, V.H. (2008), "When size really matters: size-dependent properties and surface chemistry of metal and metal oxide nanoparticles in gas and liquid phase environments", J. Phys. Chem. C, 112(47), 18303-18213.   DOI
43 Grigoriev, D., Gorin, D. Sukhorukov, G.B., Yashchenok, A., Maltseva, E. and Mohwald, H. (2007), "Polyelectrolyte/magnetite nanoparticle multilayers: Preparation and structure characterization", Langmuir, 23(24), 12388-12396.   DOI
44 Zarrin, A., Sadighian, S., Rostamizadeh, K., Firuzi, O., Hamidi, M., Mohammadi-Samani, S. and Miri, R. (2016), "Design, preparation, and in vitro characterization of a trimodally-targeted nanomagnetic oncotheranostic system for cancer diagnosis and therapy", Int. J. Pharm., 500(1), 62-76.   DOI
45 Xiang, Q., Teixeira, C.B., Sun, L. and Morais, P.C. (2016), "Magnetic nanoparticle film reconstruction modulated by immersion within DMSA aqueous solution", Sci. Rep., 6, 18202.   DOI
46 Yiu, H.H.P., McBain, S.C., Lethbridge, Z.A.D., Lees, M.R. and Dobson, J. (2010), "Preparation and characterization of polyethylenimine-coated $Fe_3O_4$-MCM-48 nanocomposite particles as a novel agent for magnet-assisted transfection", J. Biomed. Mater. Res. A, 92(1), 386-392.
47 Wang, Y., Ma, H., Wang, X., Pang, X., Wu, D., Du, B. and Wei, Q. (2015), "Novel Signal Amplification Strategy for Ultrasensitive Sandwich-Type Electrochemical Immunosensor Employing Pd-$Fe_3O_4$-GS as the Matrix and $SiO_2$ as the Label", Biosens. Bioelectron., 74, 59-65.   DOI
48 Decher, G. (1997), "Fuzzy nanoassemblies: toward layered polymeric multicomposites", Science, 277(5330), 1232-1237.   DOI
49 Gross, M.A., Sales, M.J.A., Soler, M.A.G., Pereira-da-Silva, M.A., da Silva, M.F.P. and Paterno, L.G. (2014), "Reduced graphene oxide multilayers for gas and liquid phases chemical sensing", RSC Adv., 4(34), 17917-17924.   DOI
50 Hammond, P.T. (2004), "Form and function in multilayer assembly: New applications at the nanoscale", Adv. Mater., 16(15), 1271-1293.   DOI
51 Han, U., Seo, Y. and Hong, J. (2016), "Effect of pH on the structure and drug release profiles of layer-by-layer assembled films containing polyelectrolyte, micelles, and graphene oxide", Sci. Rep., 6, 24158.   DOI
52 Ho, D., Sun, X. and Sun, S. (2011), "Monodisperse magnetic nanoparticles for theranostic applications", Acc. Chem. Res., 44(10), 875-882.   DOI
53 Huang, W.-S., Humphrey, B.D. and MacDiarmid, A.G. (1986), "Polyaniline, a novel conducting polymer. Morphology and chemistry of its oxidation and reduction in aqueous electrolytes", J. Chem. Soc. Faraday Trans., 1, 82(8), 2385-2400.   DOI
54 Jolivet, J.-P., Cassaignon, S., Chaneac, C., Chiche, D., Durupthy, O. and Portehault, D. (2010), "Design of metal oxide nanoparticles: control of size, shape, crystalline structure and functionalization by aqueous chemistry", Compte-Rendu de Chimie de l'Academie des Sciences, 13(1), 40-51.   DOI
55 Kang, Y.S., Risbud, S., Rabolt, J.F. and Stroeve, P. (1996), "Synthesis and characterization of nanometersize $Fe_3O_4$ and ${\gamma}-Fe_2O_3$ particles", Chem. Mater., 8(9), 2209-2211.   DOI
56 Leite, F.L., Paterno, L.G., Borato, C.E., Herrmann, P.S.P, Oliveira, O.N. and Mattoso, L.H.C. (2005), "Study on the adsorption of poly (o-ethoxyaniline) nanostructured films using atomic force microscopy", Polymer, 46(26), 12503-12510.   DOI
57 Kim, H.S., Sohn, B.H., Lee, W., Lee, J.-K., Choi, S.J. and Kwon, S.J. (2002), "Multifunctional layer-bylayer self-assembly of conducting polymers and magnetic nanoparticles", Thin Solid Films, 419(1), 173-177.   DOI
58 Ko, Y., Shin, D., Koo, B., Lee, S.W., Yoon, W.S. and Cho, J. (2015), "Ultrathin supercapacitor electrodes with high volumetric capacitance and stability using direct covalent-bonding between pseudocapacitive nanoparticles and conducting materials", Nano Energy, 12, 612-625.   DOI
59 Kurtinaitienė, M., Mazeika, K., Ramanavicius, S., Pakstas, V. and Jagminas, A. (2016), "Effect of additives on the hydrothermal synthesis of manganese ferrite nanoparticles", Adv. Nano Res., Int. J., 4(1), 1-14.
60 Letti, C.J., Paterno, L.G., Pereira-da-Silva, M.A., Morais, P.C. and Soler, M.A.G. (2017), "The role of polymer films on the oxidation of magnetite nanoparticles", J. Solid. State. Chem., 246, 57-64.   DOI
61 Lvov, Y.K., Ariga, I., Ichinose, I. and Kunitake, T. (1995), "Assembly of multicomponent protein films by means of electrostatic layer-by-layer adsorption", J. Am. Chem. Soc., 117(22), 6117-6123.   DOI
62 Magnani, M., Galluzzi, L. and Bruce, I.J. (2006), "The use of magnetic nanoparticles in the development of new molecular detection systems", J. Nanosc. Nanotech., 6(8), 1-10.
63 Mamedov, A. Ostrander, J., Aliev, F. and Kotov, N.A. (2000), "Stratified assemblies of magnetite nanoparticles and montmorillonite prepared by the layer-by-layer assembly", Langmuir, 16(8), 3941-3949.   DOI
64 Melo, T.F.O., da Silva, S.W., Soler, M.A.G., Lima, E.C.D. and Morais, P.C. (2006), "Investigation of surface passivation process on magnetic nanoparticles by Raman spectroscopy", Surf. Sci., 600(18), 3642-3645.   DOI
65 Marinica, O., Susan-Resiga, D., Balanean, F., Vizman, D., Socoliuc, V. and Vekas, L. (2016), "Nano-micro composite magnetic fluids: Magnetic and magnetorheological evaluation for rotating seal and vibration damper applications", J. Magn. Magn. Mater., 406, 134-143.   DOI
66 Massart, R., Dubois, E., Cabuil, V. and Hasmonay, E. (1995), "Preparation and properties of monodisperse magnetic fluids", J. Magn. Magn. Mater., 149(1-2), 1-5.   DOI
67 Mattoso, L.H.C., Zucolotto, V., Paterno, L.G., van Griethuijsen, R., Ferreira, M., Campana, S.P. and Oliveira, Jr. O.N. (1995), "Self-assembly films of polyacids and doped poly (o-alkoxyanilines)", Synth. Met., 71(1-3), 2037-2038.   DOI
68 Morais, P.C, da Silva, S.W., Soler, M.A.G. and Buske, N. (2000), "Raman investigation of uncoated and coated magnetic fluids", J. Phys. Chem. A, 104(13), 2894-2896.   DOI
69 Nan, Q., Li, P. and Cao, B. (2016), "Fabrication of positively charged nanofiltration membrane via the layerby-layer assembly of graphene oxide and polyethylenimine for desalination", Appl. Surf. Sci., 387, 521-528.   DOI
70 Neumann, R.F., Bahiana, M., Paterno, L.G., Soler, M.A.G., Sinnecker, J.P, Wen, J.G. and Morais, P.C. (2013), "Morphology and magnetism of multifunctional nanostructured ${\gamma}$-$Fe_2O_3$ films: Simulation and experiments", J. Magn. Magn. Mater., 347, 26-32.   DOI
71 O'Neal, J.T., Bolen, M.J., Dai, E.Y. and Lutkenhaus, J.L. (2017), "Hydrogen-bonded polymer nanocomposites containing discrete layers of gold nanoparticles", J. Colloid Interf. Sci., 485, 260-268.   DOI
72 Paterno, L.G., Alcantara, G.B., Fonseca, F.J., Soler, M.A.G., Sinnecker, J.P., Novak, M.A., Lima, E.C.D. and Morais, P.C. (2009b), "Fabrication and characterization of nanostructured conducting polymer films containing magnetic nanoparticles", Thin Solid Films, 517(5), 1753-1758.   DOI
73 Paterno, L.G. and Mattoso, L.H.C. (2001), "Effect of pH on the preparation of self-assembled films of poly (o-ethoxyaniline) and sulfonated lignin", Polymer, 42(12), 5239-5245.   DOI
74 Paterno, L.G. and Soler, M.A.G. (2013), "Layer-by-layer enabled nanomaterials for chemical sensing and energy conversion", Jom, 65(6), 709-719.   DOI
75 Paterno, L.G., Soler, M.A.G., Fonseca, F.J., Sinnecker, J.P., Sinnecker, E.H.C.P., Lima, E.C.D., Novak, M.A. and Morais, P.C. (2009a), "Layer-by-layer assembly of bifunctional nanofilms: Surfacefunctionalized maghemite hosted in polyaniline", J. Phys. Chem. C, 113(13), 5087-5095.   DOI
76 Paterno, L.G., Soler, M.A.G., Fonseca, F.J., Sinnecker, J.P., Sinnecker, E.H.C.P., Lima, E.C.D., Bao, S.N., Novak, M.A. and Morais, P.C. (2010), "Magnetic nanocomposites fabricated via the layer-by-layer approach", J. Nanosci. Nanotech., 10(4), 2679-2685.   DOI
77 Paterno, L.G, Sinnecker, E.H.C.P., Soler, M.A.G., Sinnecker, J.P., Novak, M.A. and Morais, P.C. (2012), "Tuning of magnetic dipolar interactions of maghemite nanoparticles embedded in polyelectrolyte layerby-layer films", J. Nanosci. Nanotechnol., 12(8), 6672-6678.   DOI
78 Patrocinio, A.O.T., Paterno, L.G. and Ilha, N.Y.M. (2010), "Role of polyelectrolyte for layer-by-layer compact $TiO_2$ films in efficiency enhanced dye-sensitized solar cells", J. Phys. Chem. C, 114(41), 17954-17959.   DOI
79 Park, S. (2009), "Preparation of iron oxides using ammonium iron citrate precursor: Thin films and nanoparticles", J. Solid. State. Chem., 182(9), 2456-2460.   DOI
80 Pereira, A., Alves, S., Casanova, M., Zucolotto, V. and Bechtold, I.H. (2010), "The use of colloidal ferrofluid as building blocks for nanostructured layer-by-layer films fabrication", J. Nanopart. Res., 12(8), 2779-2785.   DOI
81 Philip, J. and Laskar, J.M. (2012), "Optical properties and applications of ferrofluids-A review", J. Nanofluids, 1(1), 3-20.   DOI
82 Pichon, B.P., Louet, P., Felix, O., Drillon, M., Begin-Colin, S. and Decher, G. (2011), "Magnetotunable hybrid films of stratified iron oxide nanoparticles assembled by the layer-by-layer technique", Chem. Mater., 231(16), 3668-3675.