• 제목/요약/키워드: Foot pressure

검색결과 536건 처리시간 0.023초

경중족 절단 환자의 의족지 착용에 따른 족저압력 분포 특성 (Characteristics of Foot Pressure Distribution with or without Partial Prosthetic Foot in Transmetartarsal Amputee)

  • 성우성;양희승;성홍기;김학준
    • 대한족부족관절학회지
    • /
    • 제12권1호
    • /
    • pp.41-46
    • /
    • 2008
  • Purpose: This study was designed to evaluate characteristics of foot pressure distribution with or without partial prosthetic foot in transmetatarsal amputee. Materials and Methods: The subjects were 9 transmetatarsal amputees. Foot pressures were measured at hallux, the $1^{st}-5^{th}$ metatarsal head (MTH), mid-foot, condyle area by F-scan system in amputated or contralateral foot during active walking. Results: In amputated foot, mean peak pressure was greatest in midfoot without prosthetic foot but it was greatest in hindfoot with prosthetic foot. In unaffected foot, although mean peak pressure was higher in hallux, and $1-5^{th}$ MTH compared to amputated foot, it was greatest in hind foot both with and without prosthetic foot. However, in unaffected foot, mean peak pressure significantly decreased in hallux and $5^{th}$ MTH after wearing the prosthetic foot. There was a significant difference in mean peak pressure in hallux and $5^{th}$ MTH between amputated and unaffected foot after wearing prosthetic foot. However, other region had no significant difference with or without prosthetic foot between feet. Conclusions: The use of partial prosthetic foot tends to shift weight bearing from the heel area to forefoot and could significantly reduce hind foot peak pressure and redistributed to peak pressure. The partial prosthetic foot can also offer the peak pressure to reduction both amputated foot and unaffected foot and help to toe off during walking.

  • PDF

Effects of Visual Feedback Short Foot Exercise on Foot Pressure in Adults with Flexible Flat Foot

  • Jeong, Dawoon
    • 국제물리치료학회지
    • /
    • 제10권4호
    • /
    • pp.1934-1939
    • /
    • 2019
  • Background: Flexible flat foot is that the medial longitudinal arch collapses in weight bearing and returns normal arch when weight is removed and the weight bearing shifts toward medial part of the foot, which can cause pathological problems in the alignment of the lower extremities and the entire body. Objective: To compare the foot pressure for adults with flexible flat foot. Design: Quasi-Experimental Study Methods: 24 participants with flexible flat foot were recruited and were randomly divided into Visual feedback Short Foot Exercise (VSFE) group and Short Foot Exercise (SFE) group. To compare changes of foot pressure about pre and post intervention, the contact pressure measurement was conducted. Results: In the VSFE, significant differences were observed for the foot pressure of the 1st toe, 1st, 3rd and 4-5th metatarsal, midfoot, medial and lateral heel (p<.05). The foot pressure of the 3rd and 4-5th metatarsal, midfoot showed significant differences in the SFE (p<.05). The contact pressure of the 1st toe, 3rd metatarsal showed significant differences between the groups. Conclusions: Visual feedback short foot exercise can be useful for moving the pressure from medial to lateral part, and can prevent possible pathological problems.

보행 중 입각기 시 정상 성인과 편마비 환자의 환측과 건측의 족저압 분포 비교 (The Comparison of Plantar Foot Pressure in Normal Side of Normal People, Affected Side and Less Affected Side of Hemiplegic Patients During Stance Phase)

  • 윤향운;이상열;이현민
    • 대한물리의학회지
    • /
    • 제4권2호
    • /
    • pp.87-92
    • /
    • 2009
  • Objects:The purpose of this study is to investigate the values of foot pressure of the stance phase during a gait cycle in hemiplegic gait. Method:42 patients who had a stroke and 42 healthy adults were evaluated by the RSscan system to analyze the stance phase of hemiplegic gait. The stance phase was evaluated as plantar foor pressure. Results:1) Foot plantar pressure of toe area, affected side and less affected side showed low distribution of the plantar foot pressure which is lower than plantar foot pressure of normal adults(p<0.05). 2) Foot plantar pressure of metatarsal area, showed significantly differences among hemiplesic patient's affected side and less affected side and distribution of plantar foot pressure of normal adults(p<0.05). 3) Foot plantar pressure of heel area, hemiplesic patients' affected side and less affected side showed lower distribution of the plantar foot pressure than plantar foot pressure of normal adults(p<0.05). Conclusion:The results of this study suggest that not only affected side but also less affected side in hemiplegic patients showed significantly differences in distribution of the plantar foot pressure of normal adults.

  • PDF

회외족의 Wedge Insole 각에 따른 보행 시 접지 시간, 접지면적 및 족저압력의 비교 (The Effect of the Wedge Insole Angle of Supinated Group on Foot Contact Time, Foot Contact Area and Foot Pressure)

  • 이효택;김용재
    • 수산해양교육연구
    • /
    • 제22권4호
    • /
    • pp.508-515
    • /
    • 2010
  • This study was conducted on male college students with supinated foot to measure the foot pressure by having them wear three kinds of wedge insoles ($0^{\circ}$, $3.5^{\circ}$, $7^{\circ}$). Foot contact time, foot contact area, peak pressure and mean pressure were measured using a foot pressure distribution measuring instrument. And the surface of the foot sole was divided into 10 areas. Regarding foot contact time, there was no statistically significant difference by showing $0.69{\pm}0.004$ seconds at $3.5^{\circ}$ and $0.68{\pm}0.006$ seconds at $0^{\circ}$ and $7^{\circ}$. Regarding the foot contact area, it appeared broad in the inside area of the foot according to wedge insole, and there was statistically significant difference in the area 1 of the rear foot(p< .01) and the area 3 of the middle foot(p< .05). The peak pressure by foot area decreased in the outside of the foot according to wedge insole, while increasing in the inside of the foot. Among the areas, there was statistically significant in the area 2 of the rear foot (p< .01) and the area 3 of the middle foot (p< .05). Regarding the mean pressure by foot area, the pressure roughly increased in the inside area of the foot according to wedge insole, while decreasing in the outside of the foot.

중족부 Wedge 착용 시 회내 집단의 최대 힘과 족저압력 연구 (The Study of the Mid-sole Wedge of Pronated Group on Maximum Force and Foot Pressure)

  • 이재익;이효택;김용재
    • 한국운동역학회지
    • /
    • 제20권3호
    • /
    • pp.337-344
    • /
    • 2010
  • This study was conducted on male college students with pronated foot to measure the foot pressure by having them wear three kinds of mid-sole wedge ($0^{\circ}$, $5^{\circ}$, $10^{\circ}$). Maximum force, foot contact area, mean pressure and peak pressure were measured using a foot pressure distribution measuring instrument. And the surface of the foot sole was divided into 10 areas. Regarding maximum force, there were statistically significant difference in the area 3 of the middle foot(p<.05). Regarding the foot contact area, it appeared broad in the outside area(1, 3, 5) of the foot according to mid-sole wedge, and there was statistically significant difference in the area 1 of the rear foot(p<.05) and the area 3 of the middle foot(p<.05). Mean pressure by foot area decreased in the inside of the foot according to mid-sole wedge, and there was statistically significant difference in the area 2 of the rear foot(p<.05) and the area 3 of the middle foot(p<.05). Regarding the peak pressure by foot area, the pressure roughly decreased in the inside area(2, 4, 7) of the foot according to mid-sole wedge, and there was statistically significant difference in the area 1(p<.05), 2(p<.05) of the rear foot and the area 3 of the middle foot(p<.05).

시분할 측정기법을 이용한 임베디드 족압 측정 시스템 설계 (Development of an Embedded Foot Pressure Measurement System Using Time Division Measurement Method)

  • 김시경
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1022-1027
    • /
    • 2004
  • In this paper, an embedded foot pressure measurement system is proposed to measure foot pressure based on the embedded Linux system. To measure foot pressure data and to evaluate foot pressure distribution for the different insoles, FSR sensor, A/D converter, iPAQ PDA, and a time division measurement method are employed in the system. Utilizing this system, the foot pressure analysis has been performed for the different four shoes. The number of foot pressure/voltage conversion circuits are drastically decreased by the proposed time division measurement method from 406 to 14. The experimental results for the sandal, slipper, oxford shoes and sneakers demonstrate that the proposed system successfully performs the foot pressure measurement.

농구 자유투 동작 시 숙련자 및 미숙련자의 족저압력 분석 (Analysis of Plantar Foot Pressure in Skilled and Unskilled Player's during a Free Throw in Basketball)

  • 김창현;이중숙;장영민
    • 한국운동역학회지
    • /
    • 제22권2호
    • /
    • pp.183-191
    • /
    • 2012
  • The objective of this study was to evaluate the plantar foot pressure of skilled and unskilled players during a free throw. The experiment performed here in measured the movement route of the mean foot pressure, maximum foot pressure, and center of pressure in four event zones (ready, maximum knee flexion, release event, and maximum knee extension) for both groups while they were wearing the plantar foot pressure measurement equipment under identical conditions. The major findings are as follows. When getting ready (RD) during a free throw, the skilled player group had higher mean and maximum foot pressures, although neither variable showed significant differences statistically. For the maximum knee flexion (MF) during a free throw, the skilled player group had higher mean and maximum foot pressures, but only the mean foot pressure significantly differed statistically. For the release event (RE) during a free throw, the unskilled player group had higher mean and maximum foot pressures, but only the mean foot pressure significantly differed statistically. During the maximum knee extension (ME) of a free throw, the unskilled player group had a higher mean foot pressure, and the skilled player group had a higher maximum foot pressure. No significant correlation was found between the two groups. For the skilled player group, movement towards the center of pressure showed a stable form that moved from the rear to the front and from side to side during a free throw. For the unskilled player group, movement towards the center of pressure was unstable, which made it impossible to move from the rear to the front and from left to right.

일시적인 시각차단이 만성 뇌졸중 환자의 지면 족저압 분포와 족부면적에 미치는 영향 (The Effects of Temporary Visual Block on the Foot Pressure and Foot Area of Chronic Stroke Patients)

  • 정성화;구현모
    • PNF and Movement
    • /
    • 제17권1호
    • /
    • pp.103-109
    • /
    • 2019
  • Purpose: The purpose of this study was to investigate the effect of temporary visual block existence and nonexistence on the change in foot pressure and foot area in stroke patients. Methods: Sixty-one chronic stroke patients volunteered to participate in the study. Foot pressure and foot area were measured using the Biorescue system. The subject maintain a comfortable standing position on the pressure-measuring plate one meter away from the computer. The sequence of the visual variation data while standing on the measuring plate was collected randomly. The data were collected with three repetitions and used the five-second measuring values except the first second and the last second according to each visual condition. All data were analyzed using SPSS version 21.0. The significance level for the statistical inspection was set as 0.05. Results: The comparison between the visual existence and nonexistence status showed statistically significant effects on foot pressure and foot area. The visual nonexistence status showed more improvement in foot pressure symmetry and area than visual existence status. Conclusion: This study shows that the foot pressure and foot area for the chronic stroke patients changed according to the visual states. It is predicted that these data will be used in rehabilitation training programs and to present temporary changes in visual status for stroke patients.

족압 균등화 FFD(UFPFFD)를 이용한 라스트 설계 (A Last Design Utilizing an Uniform Foot Pressure FFD(UFPFFD))

  • 장유성;이희만;김시경
    • 제어로봇시스템학회논문지
    • /
    • 제11권2호
    • /
    • pp.117-121
    • /
    • 2005
  • This paper presents a 3D last design system utilizing an uniform foot pressure FFD method. The proposed uniform foot pressure FFD(UFPFFD) is operated on the rule of foot pressure unbalance analysis and FFD. The deformation factor of the UFPFFD is constructed on the FFD lattice with the foot pressure unbalance analysis on the measured 3D foot bottom shape. In addition, the control points of FFD lattice are decided on the anatomical point and the foot pressure distribution. The 3D last design result obtained from the proposed UFPFFD is saved as a 3D dxf data format. The experimental results demonstrate that the proposed last design guarantees the balanced foot pressure distribution against on the conventional last design method.

기능적인 하지길이 차이에 따른 족저압 변화가 족부체열에 미치는 영향 (The Foot Pressure Change Caused by Functional Leg Length Having an Effect on the Foot Temperature)

  • 김민주;김주연;이혜원;임주연;하현진;안진호
    • 대한통합의학회지
    • /
    • 제1권2호
    • /
    • pp.37-46
    • /
    • 2013
  • Purpose : The purpose of the research was to analyze foot pressure, foot temperature, and correlation between foot pressure and foot temperature to grasp impact on foot pressure and body temperature distribution chart depending on functional difference of leg length. Method : After measuring leg length, put 15 students whose functional difference of leg length was over 10mm to difference group and 15 students whose functional difference of leg length was under 5mm to normal group and categorize soles of foot into 6 sections of hallux head, 1st metatarsal head, 2-4 metatarsal head, 5 metatarsal head, lateral heel, and then measure by foot pressure analyzer to analyze characteristic of pressure distribution and classify into front of the lower leg, back of the lower leg, soles of foot and measure by body temperature analyzer to analyze by checking body temperature. Result : Weight difference depending on foot pressure and body temperature was bigger when functional difference of leg length was bigger, and it could be confirmed that foot pressure and body temperature of short leg side were higher than those of short leg side. Thus, if difference exists in leg length, weight load on short leg side increases which results in higher foot pressure and body temperature, therefore enabling an assumption that mechanical problem will occur in short leg. Conclusion : When functional leg length inequality, weight bearing and pressure was getting high as a result, temperature was getting high in short leg.