• Title/Summary/Keyword: Foot Angle

Search Result 590, Processing Time 0.025 seconds

Successful Factor Analysis of 540° Dwihuryeochagi to Apply Free Style Poomsae of Taekwondo (태권도 자유 품새에 적용하기 위한 540° 뒤후려차기의 성공요인 분석)

  • Yoo, Si-Hyun;Ryu, Ji-Seon;Park, Sang-Kyoon;Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.23 no.4
    • /
    • pp.285-294
    • /
    • 2013
  • The purpose of this study was to provide fundamental information for success factors of techniques through kinematic analysis including coordination of lower extremities and landing stability according to the success and failure of $540^{\circ}$ Dwihuryeochagi in Taekwondo. Twenty Taekwondo athletes: ten success group (S, age: $22.3{\pm}1.8$ yrs, height: $172.1{\pm}5.4$ cm, body mass: $64.4{\pm}4.2$ kg) and ten failure group (F, age: $22.3{\pm}1.8$ yrs, height: $172.1{\pm}5.4$ cm, body mass: $64.4{\pm}4.2$ kg) participated in this study. Three-dimensional motion analysis using a system of 3 video cameras with a sampling of 60 fields/s was performed during the competition of $540^{\circ}$ Dwihuryeochagi. Motions were divided into five events: pivot foot landing (E1), pivot foot toe off (E2), COM max height (E3), kick impact (E4) and landing (E5). At E1, the stride width was greater for S than for F (p<.05) while the time was greater for S than for F during P4 (p<.05). At E4, knee angle was greater for S than for F (p<.05). At E5, hip angle was greater for S than for F (p<.05) while kick distance was greater for S than for F (p<.05). Furthermore, at P3, the time would be related to kicking velocity (p<.05), while at P4, the time, range of hip angle and knee angle would be related to kick distance (p<.05). At P1, COM horizontal velocity would be related to COM vertical velocity of P1 and P2 (p<.05). Based on the findings, success factors of $540^{\circ}\acute{y}$ Dwihuryeochagi were COM horizontal velocity of P1, COM vertical velocity of P2, the time, kick distance, velocity, angle of lower extremities and coordination of P3-P4.

Subtalar Distraction Arthrodesis Using Frozen Allobone Graft by Interpositional Structural (동결 동종골의 구조적 삽입을 이용한 거골하 신연 유합술)

  • Choi, Jang-Seok;Kwak, Ji-Hoon;Jun, Sung-Soo;Park, Hong-Gi
    • Journal of Korean Foot and Ankle Society
    • /
    • v.15 no.4
    • /
    • pp.201-206
    • /
    • 2011
  • Purpose: Subtalar distraction arthrodesis is useful treatment option for restore hindfoot alignment. but, using structural autograft have high risk of donor site morbidity. Recently, by replacing the structural allograft has been reported satisfactory clinical results. Therefore, the authors reviewed the results of subtalar distraction arthrodesis using a structural allograft, retrospectively. Materials and Methods: From January 2008 to May 2010, 12 patients (12 feets; 9 male, 3 female) underwent subtalar distraction arthrodesis using frozen structural allograft. 9 cases were calcaneal malunion, 2 were nonunion or malunion after subtalar arthrodesis, 1 was other cause. Mean age was 38.9 (12~66) years old and follow up period was 16.5 (12~36) months. Surgical was performed with posterolateral approach and tricortical allobone block of frozen femoral neck was used. Analysis was done with retorspective manner to evaluate preoperative, postoperative, and final follow up radiologic measurement and AOFAS ankle-hindfoot scale. Results: There was statistically significant increase (p<0.05) of ankle-hindfoot scale from preoperative 27.5 points to postoperative 72.5 points, talocalcaneal height by 6.62 mm, calcaneal pitch angle by 5.73 degrees, lateral talocalcaneal angle by 6.38 degrees and significant decrease (p<0.05) of tali-1st metatarsal angle by 5.23 degrees. 11 feet (91.7%) acquired bony union and it takes average 5.1 months. Final post-operative result revealed talocalcaneal height changed by 2.57 mm, calcaneal pitch anble, lateral talocalcaneal angle, talar-1st metatarsal angle were changed by 2.63 degrees, 1.62 degrees, 1.18 degrees, respectively (p<0.05). 3 cases of partial osteonecrosis of posterior facet of calcaneus were observed in operation field, 4 cases of complication were developed (1 case of nonunion, 1 collapse of allobone graft, 1 screw loosening, 1 superficial skin necrosis). Conclusion: Subtalar distraction arthrodesis using frozen structural allobone graft is useful alternative treatment method of arthrodesis with structural autobone graft.

Changes of Setup Variables by the Change of Golf Club Length (골프 클럽의 길이 변화에 따른 준비 자세의 변화)

  • Sung, Rak-Joon
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.95-104
    • /
    • 2005
  • To know the proper setup posture for the various clubs, changes of setup variables according to the change of golf club length was investigated. Swing motions of three male low handicappers including a professional were taken using two high-speed videocameras. Four clubs iron 7, iron 5, iron 3 and driver (wood 1) were selected for this experiment. Three dimensional motion analysis techniques were used to get the kinematical variables. Mathcad and Kwon3D motion analysis program were used to analyze the position, distance and angle data in three dimensions. The variables divided into three categories 1) position and width of anterior-posterior direction 2) position and width of lateral direction 3) angles and evaluated based on the theories of many good golf teachers. Major findings of this study were as follows. 1.The stance (distance between ankle joints) was increased as the length of the club increased but the increasing width was not large. It ranges from 5cm to 10cm and professional player showed small changes. 2. Forward lean angle of trunk was decreased (more erected) as the length of the club increased. It ranges from 30 degrees for iron7 to 25 degrees for driver. 3. Angle between horizontal and right shoulder were increased as the length of the club increased. It ranges from 10 degrees to 20 degrees and professional player showed small changes. 4. Anterior-posterior position of the shoulders were located in front of the foot for all clubs and the difference between the shoulder and knee position was decreased as the length of the club increased. 5. Anterior-posterior position of grip (hand) was located almost beneath the shoulders (2.5cm front) for iron7, but it increased to 10cm for the driver. This grip adjustment makes the height of the posture increased only 5cm from iron7 to driver. 6. Lateral position of grip located at 5cm left for the face of iron7, but it located at the right side (behind) for the face of driver. 7. Lateral position of the ball located at the 40%(15cm) of stance from left ankle for iron7 and located at the 10% (5cm) of stance for driver. 8. Head always located at the right side of the stance and the midpoint of the eyes located at the 37% of stance from the right ankle for all clubs. This means that the axis of swing always maintained consistently for all clubs. 9. Left foot opened to the target for all subject and clubs. The maximum open angle was 25 degrees. Overall result shows that the changes of the setup variables vary only small ranges from iron7 to driver. Paradoxically it could be concluded that the failure of swing result from the excessive changes of setup not from the incorrect changes. These findings will be useful for evaluating the setup motion of golf swing and helpful to most golfers.

Intelligent robotic walker with actively controlled human interaction

  • Weon, Ihn-Sik;Lee, Soon-Geul
    • ETRI Journal
    • /
    • v.40 no.4
    • /
    • pp.522-530
    • /
    • 2018
  • In this study, we developed a robotic walker that actively controls its speed and direction of movement according to the user's gait intention. Sensor fusion between a low-cost light detection and ranging (LiDAR) sensor and inertia measurement units (IMUs) helps determine the user's gait intention. The LiDAR determines the walking direction by detecting both knees, and the IMUs attached on each foot obtain the angular rate of the gait. The user's gait intention is given as the directional angle and the speed of movement. The two motors in the robotic walker are controlled with these two variables, which represent the user's gait intention. The estimated direction angle is verified by comparison with a Kinect sensor that detects the centroid trajectory of both the user's feet. We validated the robotic walker with an experiment by controlling it using the estimated gait intention.

A Design of Digital Inclinometer for Measuring Postural Balance (Preliminary Study) (자세 균형 측정을 위한 디지털 경사계 설계)

  • Myoung, Hyoun-Seok;Lee, Hyo-Ki;Lee, Kyoung-Joung;Kwon, Oh-Yun
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.238-240
    • /
    • 2006
  • In this study, we designed a digital inclinometer to measure the angle and acceleration signals. Digital inclinometer consists of a tilt sensor, accelerometer, one-chip micro controller and BlueTooth module. Using the developed system, we made an experiment with Roll. The subject is laid on the Roll and rises each foot $90^{\circ}$ and $45^{\circ}$ up, and measures angle and acceleration signals with 100Hz sampling frequency. Through several tests, we could find the possibilities and usefulness which can evaluate normality / abnormality of body posture objectively.

  • PDF

The effects of high sustained +Gz under different seat back angles (조종석 각도변화가 양성 가속도에 미치는 영향에 관한 연구)

  • 이창민;박세권
    • Journal of the Ergonomics Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.69-78
    • /
    • 1996
  • Current fighter pilots, flying new generation aircrafts with high performance, are under severe stress during aerial combat maneuvering when they are exposed to high sustained +Gz(Head-to-foot) acceleration stress. Two major factor limiting performance during high sustaied +Gz acceleration stress are loss of vision-greyout or blackout, and loss of consciousness (LOC). These symptoms are believed to occur as a result of insuff- icient blood flow to the retina and the brain. This study was conducted to evaluate the effects of high sustained +Gz stress under different seat back angle. The results. obtained by the biodvanmic computer simulations using the ATB(articulated total body) model, are represented with respect to three variables, such as HIC(head injury criterion) value, average G, and maximum G. The results demonstrate that the seat back angle(over $30^{\circ}C$) had a significant effect to decrease +Gz stress on the head segment and had no significant effect on HIC.

  • PDF

Development of Gait Correction System for Real-Time Gait

  • Kim, Wonsun;Shin, Woojin;Kim, Hyunji;Yeom, Hojun
    • International journal of advanced smart convergence
    • /
    • v.9 no.4
    • /
    • pp.139-148
    • /
    • 2020
  • Walking is one of the most natural and repetitive actions we do in our daily lives. However, many modern people have problems with shoulders, back and spine due to incorrect walking habits. Therefore, it is becoming important to diagnose and correct wrong walking habits, for example, in-toeing, out-toeing, etc. early, which can be a precursor to various diseases. In this study, we developed the system to diagnose and prevent incorrect gait by grasping and analyzing the angle and muscle activity of the foot according to the typical wrong gait type through MPU 6050 acceleration sensor and the surface EMG sensor. Through a smartphone, numerical and visualization screens based on walking can be used to represent the angle of the feet, real-time EMG values, and even the number of steps. The correction effect was enhanced by improving the cognitive ability through a system that allows individuals to easily diagnose gait through smart devices and improve them according to their own problems.

Exploration of Figurative Characteristics of Hand-Foot Coordination Movements - With Emphasis on Ballet and Korean Dance - (수족상응(手足相應) 동작의 형태학적 특징 탐색 - 발레와 한국무용을 중심으로 -)

  • Hwang, Kyu Ja;Yoo, Ji Young
    • (The) Research of the performance art and culture
    • /
    • no.20
    • /
    • pp.339-367
    • /
    • 2010
  • Despite that it is relatively difficult to compare the movements in eastern and western dancing, this study approached hand-foot coordination movements, which involve lifting both an arm and a leg to stand on one foot, from a figurative point of view. In ballet, arabesque, developpe, and attitude were recognized as the example hand-foot coordination movements, and in Korean Dance, Oesawi, Gyeopsawi, and Meongseokmari of Mask Dance were classified into the hand-foot coordination movements. The figurative characteristics of these dances were approached from the aspects of racial traits, philosophies of dancing, and forms of movements. The following summarizes the findings about hand-foot coordination movements of this study. First, in relation to human physiology, eastern and western races have different traits. The forms of dancing have developed differently according to the builds and figures of dancers. Ballet is an elegant form of dancing using long legs and arms and its arabesque, developpe, and attitude movements emphasize stretching the body for an elegant and beautiful presentation. On the other hand, Korea was an agricultural society and lived closer to the land. As its people developed petite figures, its dancing movements, especially the hand-foot coordination movements, involved 'twisting' and 'walking down and up.' Second, despite that the hand-foot coordination movements are identical for east and west, ballet aims at the heaven and Korean Dance aims at the land according to the differences in the views of nature. Although the principle of hand-foot coordination movements is about aiming at the land, western philosophies and aesthetics pursue the heaven. Third, in ballet, the focus of beauty is the presentation of beautiful movements. Therefore, the hand-foot coordination movements precisely control the position and angle of arms and legs for the perfect balance of the body. On the other hand, the hand-foot coordination movements of Korean Dance are mostly rooted from natural daily movements and movements that enhance the efficiency of labor. Therefore, it is considered beautiful techniques even if the body looks rather unbalanced.

The Effects of Complex Exercise Program with Visual Feedback on Navicular Bone Height, Plantar Pressure and Low Extremity Alignment in Flat-Footed Patients (시각적 피드백을 병행한 복합운동프로그램이 편평발 환자의 발배뼈 높이, 족저압 및 다리 정렬에 미치는 영향)

  • Hoe-Song Yang;Chan-Joo Jeong;Young-Dae Yoo;Hyo-Jeong Kang;Min-Kyu Kim
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.4
    • /
    • pp.269-279
    • /
    • 2023
  • Purpose : The most effective intervention for flat foot is strengthening exercises for the intrinsic and extrinsic of the foot. Additionally, visual feedback is necessary for movement accuracy. However, the effectiveness of the intervention when combined with visual feedback was not revealed. To confirm this, the research was to investigate the effect of visual feedback and a complex exercise program on navicular bone height, plantar pressure, and lower extremity alignment. Methods : The twenty eight adult men and women with flat foot were randomly assigned to group 1 (n=14) and group2 (n=14), group1 performed complex exercises with visual feedback, and group 2 performed only complex exercises. Both groups performed a 40 minute compound exercise program three times a week. Navicular drop test, plantar pressure test, and lower extremity alignment test were performed equally in both group. Results : As a result of comparing the change in navicular height within the group according to the intervention, both groups showed a significant difference before and after the exercise (p>.05). There was not significant difference comparing the difference between the groups in the navicular height (p>.05). Comparing the change in plantar pressure within groups, there was not significant difference in the change in plantar pressure in both groups (p>.05). Coparing the difference before and after exercise between groups, there was not significant plantar pressure (p>.05). Comparing the change in leg alignment within the group, there was a significant difference in the change in ankle before and after exercise in group 1 (p<.05), but there was not significant difference in group 2. There was not significant difference in pelvic tilt and knee tilt before and after exercise in both groups (p>.05). Comparing the before and after exercise difference between groups, there were not significant in all variables of leg alignment (p>.05). Conclusion : The results of this study showed that complex exercise applied to patients with flat foot were effective in increasing the height of the navicular bone and ankle angle, but there was no effect due to visual feedback.

Comparative Analysis of Two Pedobarography Systems (두 족저압 측정장비의 비교 분석)

  • Ho Won Kang;Soomin Pyeun;Dae-Yoo Kim;Yun Jae Cho;Min Gyu Kyung;Dong Yeon Lee
    • Journal of Korean Foot and Ankle Society
    • /
    • v.28 no.1
    • /
    • pp.21-26
    • /
    • 2024
  • Purpose: Foot pressure measurement devices are used widely in clinical settings for plantar pressure assessments. Despite the availability of various devices, studies evaluating the inter-device reliability are limited. This study compared plantar pressure measurements obtained from HR Mat (Tekscan Inc.) and EMED-n50 (Novel GmbH). Materials and Methods: The study involved 38 healthy male volunteers. The participants were categorized into two groups based on the Meary's angle in standing foot lateral radiographs: those with normal feet (angles ranging from -4° to 4°) and those with mild flatfeet (angles from -8° to -15°). The static and dynamic plantar pressures of the participants were measured using HR Mat and EMED-n50. The reliability of the contact area and mean force was assessed using the interclass correlation coefficient (ICC). Furthermore, the differences in measurements between the two devices were examined, considering the presence of mild flatfoot. Results: The ICC values for the contact area and mean force ranged from 0.703 to 0.947, indicating good-to-excellent reliability across all areas. EMED-n50 tended to record higher contact areas than HR Mat. The mean force was significantly higher in the forefoot region when measured with EMED-n50, whereas, in the hindfoot region, this difference was observed only during static measurements with HR Mat. Participants with mild flatfeet exhibited significantly higher contact areas in the midfoot region for both devices, with no consistent differences in the other parameters. Conclusion: The contact area and mean force measurements of the HR Mat and EMED-n50 showed high reliability. On the other hand, EMED-n50 tended to record higher contact areas than HR Mat. In cases of mild flatfoot, an increase in contact area within the midfoot region was observed, but no consistent impact on the differences between the two devices was evident.