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In this study, we developed a robotic walker that actively controls its speed and

direction of movement according to the user's gait intention. Sensor fusion between

a low‐cost light detection and ranging (LiDAR) sensor and inertia measurement

units (IMUs) helps determine the user's gait intention. The LiDAR determines the

walking direction by detecting both knees, and the IMUs attached on each foot

obtain the angular rate of the gait. The user's gait intention is given as the directional

angle and the speed of movement. The two motors in the robotic walker are con-

trolled with these two variables, which represent the user's gait intention. The esti-

mated direction angle is verified by comparison with a Kinect sensor that detects the

centroid trajectory of both the user's feet. We validated the robotic walker with an

experiment by controlling it using the estimated gait intention.
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1 | INTRODUCTION

Recent medical technology developments and enhanced
quality of life have improved public health, thereby creat-
ing an aging society with a high life expectancy [1]. How-
ever, daily life activities cannot be guaranteed for the
elderly because of degenerative diseases, reduced motor
ability, and low physical strength [2]. Among these factors,
diminished muscle strength in the lower extremities results
in gait instability [3]. Thus, gait orthosis is generally
employed to assist patients’ gait [4].

Most existing gait orthoses are manually operated and con-
venient to use owing to their intuitive operation. However,
moving upward on a sloping path without separate power
assistance in addition to their willpower and depending only
on gait orthosis is difficult for elderly people. Thus, various
interface‐added gait orthoses should be employed [5].

PAM‐AID is a contact‐based interface developed by Trin-
ity College. The device controls a robot with a bicycle‐like

handle, as shown in Figure 1A [6]. The driving part in PAM‐
AID is controlled through a force sensor attached to the han-
dle proportional to the force magnitude in both hands.

JAIST also determines the gait intention through various
distance measurement sensors and the handle bar, as shown
in Figure 1B [7,8]. Researchers from Carnegie Mellon
University applied a haptic device to the handle of a
walker to determine the user's gait intention and searched
the surroundings using a two‐dimensional (2D) laser range
finder (LiDAR) [9]. However, the device could not fully
determine gait intention based on the user's grip power and
skill level [10]. Many studies have been conducted to
improve the operation convenience of walkers through sen-
sor convergence and steering improvements, and thus over-
come said problems; however, the proposed methods are
limited because vehicle control based on intention determi-
nation can only be achieved through the determination of
accurate intention, as most are dependent on steering
devices [11].
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The platform‐based contact‐type interface cannot com-
pletely determine pedestrian or user intention. Hence, Yuan
attached inertia sensors at the feet, shanks, thighs, and pel-
vis, and installed a force‐sensing resistor (FSR) on the
soles to detect contact between the feet and ground surface
[12]. Through the study, he solved the problem of lower‐
extremity kinematics from the sole to the pelvis, which has
an arbitrary ground contact position, by estimating the
user's position and velocity [13]. Contact between the feet
and ground surface must be detected to estimate the loca-
tion and velocity of a pedestrian based on lower extremity
kinematics [14–16]. Pappas and Park [17] installed an FSR
and gyroscope to the soles of the shoes to detect contact
between the feet and ground surface [18]. However, if
FSRs or pressure sensors with inertia sensors have been
used to detect contact between the feet and ground surface
to solve the problem of lower extremity kinematics, then
the system complexity increases as a result of changes in
sensitivity due to differences in individual foot size and
robustness owing to repetitive weight support [19]. A hid-
den Markov model can be used to analyze a three‐dimen-
sional gait motion using image sensors; however, this
model is inferred in the discrete state space, which results

in significant information loss and decreased modeling
accuracy [20,21].

The present study configures a contactless interface
based on the determined user‐oriented gait trajectory, gait‐
assistive platform, gait direction, and straightness gait
intention. The knee joint movement according to the user's
gait is extracted in the XY coordinates using a low‐cost 2D
LiDAR. A region of interest is set in the extracted dis-
tributed knee data and changes in the coordinate values for
the gait state of both feet acquired over time are classified
into mean data, and the heading angle of the moving trajec-
tory in the coordinate values is therefore calculated.

The system derives correlations using the covariance,
correlation, and coefficient along with the heading angle
information on position data from the heading angle calcu-
lated based on knee movement. Furthermore, the system
extracts knee data of the pedestrian's lower body in the
form of XYZ coordinate information from the image data of
the pedestrian's lower body. The system calculates the cen-
troid of the three‐axis coordinate system in the lower body
in accordance with the pedestrian's movements. Moreover,
the system compares two sets of data to generate the coef-
ficient that determines gait intention [1].

2 | MATERIAL AND METHODS

2.1 | Hardware system description

A low‐cost LiDAR sensor that is driven by a servomotor in
the moving platform is used to calculate indirect gait inten-
tion of the pedestrian. Two nine degree‐of‐freedom inertia
measurement unit (IMU) sensors are attached to both feet of
the pedestrian [22]. The LiDAR sensor installed in the mov-
ing platform is an LiDAR‐Lite2 product from pulsed light;
the distance error is ±0.025 m, and the cycle is 50 Hz.

The interface is configured through the inter‐integrated
circuit communication with a sub controller, and the sen-
sor's vertical distance is measured in accordance with the
servomotor's movements.

As shown in Figure 2, a 2D LiDAR sensor is mounted on
the servomotor to detect the distance region equal to the deter-
mined space. The LiDAR sensor using the servomotor detects
the distance value that is equal to a 30° region. The detection
cycle is set to 100 Hz through the micro‐controller and an actual
gait cycle is assumed to be the mean gait cycle of 1.2 m/s–
1.6 m/s to extract pedestrians’ knee data depending on their
movements [24–25]. In addition, x‐imu sensors are attached to
the toes of both feet of the pedestrian. These inertial sensors
transmit data at 115,200 bytes per second through a USB‐
RS232 mode, which is the same mode used in the microcon-
troller. In addition, 2D‐LiDAR data are synchronized with data
of the laptop, a higher‐level controller, to receive walking
motion data [26].

(B)

(A)

FIGURE 1 Different types of robotic walkers: (A) VA‐PAM‐
AID robotic walker and (B) JAIST active robotic walker (JARoW)
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2.2 | Mathematical background

2.2.1 | Motion model

XYZ coordinates represent the dynamic equation according
to the user's gait, which includes gait velocity and location
characteristics. Given that an inertial sensor cannot find
its own absolute coordinate values, it should conduct an
initial correction. Equation (1) shows the acceleration of
a moving body at the initial state in the inertial sensor [27].

As presented in (1), acceleration at X and Y is 0 in the
stationary state and can be expressed as fn = [0, 0, −gn]T.
The initial coordinate transformation matrix can be
expressed as Cn

b in (2) as a Eulerian angle where Φ is the
roll angle, θ is the pitch angle, and Ψ is the yaw angle.

f n ¼ ½fxfyfz� ¼
sin θgn

� sinU cos θgn

� cosU cos gn

2
4

3
5; (1)

Cn
b ¼

cosðθÞ cosðψÞ
cosðθÞ cosðψÞ

� sinðθÞ

2
64

sinðUÞ sinðθÞ cosðψÞ � cosðUÞ sinðψÞ
sinðUÞ sinðθÞ cosðψÞ þ cosðUÞ sinðψÞ

sinðUÞ cosðθÞ
cosðUÞ sinðθÞ cosðψÞ � sinðUÞ sinðψÞ
cosðUÞ sinðθÞ sinðψÞ � sinðUÞ cosðψÞ

cosðUÞ sinðθÞ

3
75;

ð2Þ

Vn ¼ Cn
bf

n � ð2ωn
ie þ ωn

enÞ � Vn þ gn: (3)

Location and velocity are obtained by calculating a navi-
gation equation after converting the acceleration fn in the
navigation coordination system of the moving body in the
coordinate transformation matrix Cn

b . The velocity can be cal-
culated using (3) [28]. Vn refers to a component of the veloc-
ity represented in the navigation coordinate system, ωn

ie refers
to the angular velocity with regard to the inertial coordinate
system in the navigation coordinate system, and ωn

en refers to
the angular velocity with regard to the inertial coordinate sys-
tem in the Earth‐fixed coordinate system [29].

ωn
ie ¼ ½X cos �X; 0;�X sin �X�; (4)

ωn
en ¼ ½ρX ; ρY ; ρZ � ¼ ½�Y cos �X;��X; �Y sin �X�

¼ VE

ðR0 þ hÞ � VN

ðR0 þ hÞ � VE tan �X
ðR0 þ hÞ

� �T
;

(5)

Rm ¼ R0ð1� e2Þ
ð1� e2 sin e2�XÞ3=2

; (6)

Rt ¼ R0

ð1� e2sin2�XÞ1=2
: (7)

In the above equations, R0 is the radius of the equator
of the Earth ellipsoid, e is the Earth eccentricity, and Ω is
the angular velocity of the Earth's rotation; h is the height
of the body and L is the latitude.

In the above equations, the superscripts indicate the
frame in which each vector is expressed, and Vn = [Vx, Vy,
Vz]

T is the velocity vector on the navigation frame [34–36].

�X ¼ Vx

RL þ h
; �Y ¼ Vy

ðRl þ hÞ cos L ;
�Z ¼ �Vz: (8)

By integrating (8), the velocity and position of the navi-
gation frame can be obtained.

(B)

(A)

ServoMotor

PC

RS232

RS232
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Knee detecting area

FIGURE 2 System configuration of the gait analysis: (A)
system configuration and (B) configuration of a gait intention device
system
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2.2.2 | Calculated XYZ coordinates from
2D‐LiDAR
A laser scanner method using the phase difference gener-
ates electric signals by reflecting the laser phase and inten-
sity. The sensor compares the phase intensities between the
initial launch signal and returned signal to measure the dis-
tance.

L ¼ 1
2
� θ

ðfc � 2πÞ

 !
: (9)

In (9), L is the distance to the target, θ is the phase dif-
ference, f is the laser frequency, and c is the speed of light.
Furthermore, the coordinate system of an object in 2D space
can be created with distances and angles extracted by the
laser scanner. Equation (9) shows the calculation of the 2D
coordinate system generation. The extraction region of the
laser scanner is 90° to 120°, and h is the laser scanner's
mounted height. Hence, (10) allows us to extract a pedes-
trian's knee data from the coordinate system.

OLRF � XYZ ¼
L� sin θ
L� cos θ

h

2
4

3
5: (10)

3 | GAIT TRACKING ALGORITHM

3.1 | Gait heading detection

The heading angle for each location is monitored using gait
trajectories collected through the IMU sensor to analyze a
pedestrian's movement. Moreover, the degree of knee
movement is averaged using a 2D‐distributed coordinate
system knee data acquired from the laser scanner. The
resulting data are created as a single‐vector coordinate sys-
tem and then calculated and derived as a heading angle
over time.

3.1.1 | Measured heading from dead
reckoning

A low‐cost nine‐axis IMU sensor monitors the pedestrian's
toe movements, acceleration, angular velocity, and geomag-
netic output values obtained from the IMU sensor deter-
mine the pedestrian's direction and movement through an
extended Kalman filter based on quaternion. Moreover, the
velocity error of a pedestrian determined through the Kal-
man filter is corrected through zero velocity updating. The
determined data are calculated with three‐axis data that
include direction and velocity.

In the location coordinates of the gait trajectory over
time calculated with the three‐axis coordinate system, the

heading angle rate with regard to the current data is calcu-
lated using the previous data location at time t and location
t + 1, as shown in Figure 3. The calculated angle rate is
_θIMUðtÞ, and this is constant for a straight gait. However,
when the gait direction changes, _θIMUðtÞ is constantly
directed in a certain direction.

3.1.2 | Measured heading from the knee XYZ
coordinates

The 2D data of the coordinate system in the space inside
the platform—including knee data—are extracted using the
LiDAR installed in the platform. Thereafter, a region of
interest (ROI) is extracted as shown in Figure 4; it is
obtained with the LiDAR when its position is initialized.
After that, the two motion data are divided by the distance
based on two feet with respect to the virtual baseline. The
knee data P1(x1, y1), P2(x2, y2) in both feet divided by the
virtual region and line are the means Pavg(x, y) of the dis-
tributed data, which generate point data. The direction is
also determined according to how much the point data
move.

3.2 | Gait intension prediction algorithm

The point data between two legs extracted using the plat-
form determine the right or left direction through angle cal-
culation and origin point data coordinates in the LiDAR.
Moreover, the correlation between data is calculated with
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FIGURE 3 Gait analysis with position estimation data

LRF

Interesting area
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P2

Pavg

FIGURE 4 2D coordinate generated by low‐cost LiDAR
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the heading angle of the pedestrian's gait trajectories gener-
ated by the IMU sensor. The values between the two legs
are compared as shown in Figure 4, thereby creating move-
ment coordinates for the knees.

Pavg ¼ x1 þ x2
2

;
y1 þ y2

2

� �
: (11)

Figure 5 shows the flowchart of the algorithm that
extracts knee information from the LiDAR. Values accord-
ing to the angles where the movement of both legs can be
extracted from the LiDAR are received as raw data, and a
virtual region of interest is made to extract only the data of
both legs because large amounts of unnecessary data—in-
cluding for the moving platform—are included in the
received data.

The two feet are divided by creating a virtual centerline
and a center mean point for the knees based on the bound-
ary line. If the point of both legs is not extractable here,
then data generated previously by dividing a region are
detected and another value is extracted. As in (11), the
calculated mean value Pavg(t) of both legs creates a heading
angle according to time through the internal angle calcula-
tion with Pavg(t + 1). The created heading angle is con-
stantly calculated according to time and the pedestrian's
gait direction is determined based on the heading angle's
positive or negative direction.

In Figure 5, gait intention can be determined using the
heading angle over time created by the IMU. The heading
angle is correlated with the calculated LiDAR data θLRF,
thereby the correlation between θLRF and θIMU is deter-
mined.

Figure 6 shows how the heading angle derived through
the inertial sensor calculates the internal angle between the

updated data, but the heading angle calculated based on the
knee determines the internal angle with the mean point of
both feet based on the LiDAR mounted on the gait‐assis-
tive robot. Thus, the heading angle calculated through the
IMU shows a clear gait cycle pattern. However, the results
from the LiDAR reveal a change in the angle when the
direction changes and no change is found after the heading
angle is perpendicular to the gait‐assistive robot. Therefore,
there is correlation between the heading angles when the
direction between the two sets of data differs.

3.3 | Comparison with the vision system

Pedestrians’ gait intention is determined using a Kinect
SDK v1.0 from Microsoft to calculate the centroid of
pedestrian movements in the lower extremities, including
the knees, through image sensors, as shown in Figure 7.
The trajectory data of centroid information show a similar
pattern to that of the results created using the inertial sen-
sor, and the image sensor lets us calculate the distance
between the legs. The trajectory compares the heading

For (t = 0; t < 2; t++)

Start

Gathering 2D
LIDAR(x,y)

Set point in ROI

Set virtual line

Knee data?
No

Yes

Restart
processing

Calculated knee
point average

Calculated vector
magnitude LiDAR

Gathering
IMU data

Yaw data

Compare with yaw
and knee vector

Generate control
variable

FIGURE 5 Flowchart for the intention variable with the LiDAR

FIGURE 6 Gait tracking with knee detection data and the IMU

Gait pattern with centroid
(right)

Gait pattern with centroid
(straight)

z

y
x

FIGURE 7 Gait pattern with centroid using a Kinect sensor [15]
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angle information of gait intention determined using the
IMU and LiDAR [30].

4 | EXPERIMENT AND RESULTS

We conducted the gait intention detecting experiment in
the hallway of a normal office building while a user
walked or moved in a pre‐set range where the range and
trajectory are set in advance. The following three motion
scenarios were used to test the gait intention of direction
detection:

(1) Straight walking: The user walks straight forward for
four steps with a stride of 134 cm.

(2) Right-turn walking: The user folds to the right side at
10° intervals around the point of completing the four
steps of straight walking gait.

(3) Left-turn walking: The user walks on the left side in
the same manner as in (2).

The distance between the gait orthosis mounted with
LiDAR and Kinect sensors and the user is maintained at
35 cm, as shown in Figure 8.

4.1 | Gait intention detection with gait data

Only the direction intention between the two sets of knee
data is measured using the gait direction extracted from the
knee data of the gait trajectory.

As shown in Figure 9, the direction intention for the
gait can be determined by the knee movement measured
with the LiDAR. The center of the body can be expressed
as the middle point of both knees based on a virtual line.
When the user turns to a preferred direction with a change
in the heading angle, the knees also change to that direc-
tion consistently beyond the virtual centerline. Figure 9B
shows how the left knee crosses over the centerline in the
Y‐axis when the user turns right. Conversely, Figure 9C
shows that the knees turn left when the user turns left.

Figure 10 shows the change in the vector between the
robotic walker and the user's knees during left‐turn walking.
The data only show one cycle of a typical gait. Figure 10
shows that the deviation is in the range −0.2 to 0. Before
the users change their walking direction to the right or left,
they usually turn their bodies in that direction and push the
robotic walker in that direction. The vertical distance
increases and the deviation becomes greater than that in
existing data, as shown in Figures 11 and 12. The change
in the vector with respect to the virtual line during user's
gait clearly shows the characteristics of the walking inten-
tion as shown in the figures. As the user turns to a certain

FIGURE 8 Experiment setup: distance configuration between a
user and the LRF sensor of the prototype rollator
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FIGURE 9 Gait tracking with knee detection: (A) straight
walking, (B) right‐turn walking, and (C) left‐turn walking
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direction, the deviation from the virtual center line along
the Y‐axis increases depending on the change in distance.

Figure 10 shows the obtained data during right‐turn
walking where the positive vector magnitude denotes the
deviation of the middle position of both knees from the vir-
tual center line to the right. Figure 11 shows that there is
an overall tendency of moving left as a downward curve
until 38 seconds, but the short‐term data pattern shows a
swaying motion.

Figure 12 shows the obtained data for straight walking.
The data fluctuate left to right for each gait cycle, but the
average value of each gait cycle remains within a threshold
level, shown as the dotted line in Figure 12.

For both right‐turn and left‐turn walking, the heading
angle of walking is measured with IMU sensors attached to
each foot as shown in Figure 13. The trend of the point
location data generated with the assumption that the turning
point after straight walking ends is (0, 0), as shown in Fig-
ure 14. A significant amount of noise can be found in the
gait direction data as the movement degree in the knees in
a limited virtual space is measured through the LiDAR;
however, the gait trend can be identified.

Figure 15 shows how the angles generated during right
walking based on the starting point can be calculated as an
absolute value. The accurate heading angle is calculated
through comparison with the gait direction calculated

through the LiDAR, as shown in Figure 15. Figure 13
shows a regular pattern of the heading angle rate measured
with the movement point data for each case. The deviation
for the left‐turn and the right‐turn gait is more severe than
that for the straight gait. Figure 14 shows the angle of gait
tracking by fusing algorithm results obtained from the iner-
tial sensor and the LiDAR. These results are similar to
those extracted for the knees, but a significant deviation
between the two sets of data calculated using Figure 15 is
found during the direction‐change gaits. Moreover, the
heading angle from the knees is 3° through 5°, whereas the
data obtained through the IMU indicate that the maximum
change angle per gait cycle is 2° with a 1° through 3° error.

4.2 | Controlled direction of robotic walker

The robot walker is driven using the walking intention
variables, and the experiment is conducted for three types
of movement: straight walking, left‐turn walking, and right‐
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FIGURE 10 Gait tracking variation in knee detection during
right‐turn walking
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turn walking. Non‐contact determination for gait intention
is performed using the LiDAR and IMU sensors. Then,
even if the user does not hold it, the walking‐assist robot
can move in the walking direction the users intend.

In the case of the straight walk in Figure 16, as the user
keeps a regular walking pattern, the walking‐assist robot
also follows the straight walking as well. In the case of the
right‐turn or left‐turn walking in Figure 16, the angle of
the detected direction is larger than that of the user's mov-
ing direction. In particular, in the case of right turning, the
walking assist robot moved 5° further than the user's walk-
ing intention. One reason for this is that the experiment
was performed by setting the angle according to the fixed
threshold value and the walking intention without consider-
ing each case's gait characteristic.

5 | DISCUSSION

Algorithm data are tracked to track progression through the
knee joint's kinematic trajectory; this generates a phase
relationship between the two sets of data by using the algo-
rithm of the data that proceeds through each inertial sensor.
The actual walking direction is estimated using the correla-
tion data. In particular, the results verify that 1° to 2° of
turning from the center point occurs in every cycle when
the pedestrian turns right or left, as shown in Figure 15.
The present study results are compared with other study
results on gait intention determination that are obtained by

calculating the centroid of lower‐extremity joints through
Kinect. Consequently, there is a large deviation in terms of
walking in a certain direction. However, this limitation can
be overcome by employing a dynamic mechanism analysis
of pedestrians and a walking‐assistive robot.

6 | CONCLUSION

The present study investigated user movement in a virtual
space where a walking‐assistive robot moves to generate
movements with 2D coordinates. In particular, the move-
ment trajectories of knee joints and toes in the current
study are generated using the heading angles of data over
time such that the directions taken by pedestrians are
expressed as gait intention. The current results are com-
pared with those of other studies on gait intention that uti-
lize existing image sensors. Notably, the present findings
can identify gait intention trends. Considering a gait with
approximately 14° turning from the starting line, three gait
cycles with 1° to 3° of turning for each are determined,
which can ultimately identify the gait heading angle and
intention. However, this can create a maximum error of up
to 30 cm; this error is relatively large compared to data
obtained from the image sensor. Nonetheless, we can
reduce this through future gait intention studies that include
gait‐oriented mechanical analysis and the mechanical analy-
sis of walking‐assistive robots. Therefore, the present find-
ings lay a foundation for further exploration of the driving
control of walking‐assistive robots.
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