• Title/Summary/Keyword: Food regulation

Search Result 1,107, Processing Time 0.025 seconds

Nutritional Regulation of Plasminogen Activator Inhibitor-1, Leptin and Resistin Gene Expression in Obese Mouse

  • Lee, Hyun-Jung;Yang, Jeong-Lye;Kim, Young-Hwa;Kim, Yangha
    • Nutritional Sciences
    • /
    • v.6 no.2
    • /
    • pp.73-77
    • /
    • 2003
  • PAI-1 (plasminogen activator inhibitor-1), leptin, and resistin are synthesized and secreted by Int cells of rodents and have recently been postulated to be an important link to obesity. This study was conducted to identify the nutritional regulation of PAI-1, leptin, and resistin gene expression in 0b/ob mice. The mice were divided into four groups according to nutritional status: control, 48 hour fasting, 48 hour-fasting/12 hour-refeeding, and 48 hour-fasting/24 hour-refeeding. The mRNA levels of each peptide were measured by semi-quantitative RT-PCR. In visceral fat tissue, the level of PAI-1 mRNA increased markedly when 48h-fasted animals were refed with a high carbohydrate-low fat diet. However, lasting/refeeding did not appreciably change PAI-1 mRNA levels in subcutaneous fat tissue. Similar results were obtained for resistin mRNA levels in both types of fat tissues. These findings suggest that visceral adipose tissue might be more sensitively involved in the nutritional regulation of PAI-1 and resistin gene expression compared to subcutaneous fat tissue. The level of leptin mRNA decreased markedly in the 48h-fasted animals, and increased markedly when 48h-fasted animals were refed with a high carbohydrate-low fat diet. The nutritional regulation of leptin mRNA showed similar patterns in both types of fat tissues. In conclusion, the nutritional regulation of gene expression encoding PAI-1, resistin, and leptin from adipocytes may vary according to the type of adipose tissue.

Pulegone Exhibits Anti-inflammatory Activities through the Regulation of NF-κB and Nrf-2 Signaling Pathways in LPS-stimulated RAW 264.7 cells

  • Roy, Anupom;Park, Hee-Juhn;Abdul, Qudeer Ahmed;Jung, Hyun Ah;Choi, Jae Sue
    • Natural Product Sciences
    • /
    • v.24 no.1
    • /
    • pp.28-35
    • /
    • 2018
  • Pulegone is a naturally occurring organic compound obtained from essential oils from a variety of plants. The aim of this study was to investigate the anti-inflammatory effects through the inhibitory mechanism of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX-2), nuclear factor kappa B ($NF-{\kappa}B$), mitogen-activated protein kinases (MAPK) pathways and the activation of nuclear factor erythroid 2-related factor 2 (Nrf2)/ heme oxygenase (HO)-1 pathways in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Results revealed that pulegone significantly inhibited NO production as well as iNOS and COX-2 expressions. Meanwhile, western blot analysis showed that pulegone down-regulated LPS-induced $NF-{\kappa}B$ and MAPKs activation in RAW 264.7 cells. Furthermore, the selected compound suppressed LPS-induced intracellular ROS production in RAW 264.7 cells, while the expression of stress response gene, HO-1, and its transcriptional activator, Nrf-2 was upregulated upon pulegone treatment. Taking together, these findings provided that pulegone inhibited the LPS-induced expression of inflammatory mediators via the down-regulation iNOS, COX-2, $NF-{\kappa}B$, and MAPKs signaling pathways as well as up-regulation of Nrf-2/HO-1 indicating that pulegone has a potential therapeutic and preventive application in various inflammatory diseases.

Regulation of Acetyl-CoA Carboxylase Gene Expression by Hormones and Nutrients

  • Kim, Youn-Jung;Yang, Jeong-Lye;Kwun, In-Sook;Kim, Yang-Ha
    • Preventive Nutrition and Food Science
    • /
    • v.8 no.1
    • /
    • pp.61-65
    • /
    • 2003
  • This study was investigated to identify the regulatory mechanism of ACC gene expression by hormones and nutrition. The fragment of ACC promoter I (PI) -220 bp region was recombined to pGL3-Basic vector with luciferase as a reporter gene. The primary hepatocyte from the rat was used to investigate the regulation of ACC PI activity. ACC PI (-220 bp)/luciferase chimeric plasmid was transfected into primary rat hepatocyte by using lipofectin. ACC PI activity was shown by measuring luciferase activity. The addition of insulin, dexamethasone, and triiodothyronine to the culture medium increased the activity of ACC PI by 2.5-, 2.3- and 1.8-fold, respectively. In the presence of 1 $\mu$M dexamethasone, the effects of insulin was amplified about 1.2-fold showing the additional effects of dexamethasone. Moreover the activity of luciferase was increased by insulin, dexamethasone, and triiodothyronine treatment approximately 4-fold. These results indicated that insulin, dexamethasone and thyroid hormone coordinately regulate ACC gene expression via regulation of promoter I activity. On the -220 to +21 region of ACC PI, the addition of the glucose to the culture medium increased the activity of ACC PI. With 25 mM glucose, luciferase activity increased by 7-fold. On the other hand, on the -220 bp region, ACC PI activity was not changed by polyunsaturated fatty acids. Therefore, it can be postulated that there are response elements for insulin, triiodothyronine, dexamethasone, and glucose, but not PUFAs on the -220 bp region of ACC PI.

Neuroprotective effects of Paeonia lactiflora and its active compound paeoniflorin against Aβ25-35-induced neurotoxicity in SH-SY5Y cells

  • Nam, Mi Na;Kim, Ji-Hyun;Lee, Ah Young;Cho, Eun Ju
    • Journal of Applied Biological Chemistry
    • /
    • v.64 no.2
    • /
    • pp.105-112
    • /
    • 2021
  • Excessive accumulation of the amyloid beta (Aβ) peptide has been implicated in the pathogenesis of Alzheimer's disease (AD). Paeonia lactiflora (PL) has been used in treatments of several conditions such as inflammation, arthritis, and cognitive impairment. The purpose of this study was to investigate the neuroprotective effect and mechanisms of PL and its active compound, paeoniflorin (PF), on Aβ25-35-induced neurotoxicity in SH-SY5Y cells. We evaluated cell viability, lactate dehydrogenase (LDH) release and reactive oxygen species (ROS) production. Furthermore, underlying mechanism of PL and PF on the regulation of amyloidogenic pathway was analyzed by Western blotting. In our results, Aβ25-35-induced neuronal cell loss was observed, whereas treatment with PL (10, 50, and 100 ㎍/mL) and PF (1, 5, and 10 ㎍/mL) significantly elevated the cell viability, and decreased LDH release and ROS production. In addition, exposure of SH-SY5Y cells to Aβ25-35 significantly increased the protein levels of amyloid precursor protein (APP)-C-terminal fragment β, β-site APP-cleaving enzyme, and presenilin-1 and -2. However, treatment with PL and PF inhibited the amyloidogenic pathway via the down-regulation of those protein expressions. Taken together, our results indicate that PL, and its active compound PF, could protect SH-SY5Y cells against Aβ25-35-induced cell neurotoxicity by attenuating LDH release and ROS production, and these effects may be attributed to regulation of amyloidogenic pathway-related protein expression. In conclusion, PL and PF could be a potential to prevent neurodegenerative disorders such as AD.

Significance of regulatory impact analysis(ria) system on food safety regulation and role of food industry (식품안전분야 규제영향분석제도의 의의와 식품 산업의 역할)

  • Ko, Hyo-Jin
    • Food Science and Industry
    • /
    • v.51 no.3
    • /
    • pp.174-184
    • /
    • 2018
  • The impact of regulations on industrial activities is significant. Because the food industry has to observe given obligations and bear costs and expenses resulted from complying with applicable food safety regulations. Meanwhile, A government drafts the regulatory impact analysis report prior to enactment, amendment or reinforcement of any regulations. The analysis powered by objective and scientific methodologies enable a government to judge whether a particular regulation will be good or bad for the society. An effective policy implementation in practice and cost-bearing is entirely up to industries. Moreover, opportunity cost and actual cost relating to or arising from regulatory compliance will be estimated only by the respective industries. Therefore, the food Industry needs to collect and accumulate the said information and also to disseminate their hardships and financial burdens. Objective and practical information will encourage a government to set out regulatory frameworks that rational policy making.

Identification of a Novel Genetic Locus Affecting ptsG Expression in Escherichia coli

  • Shin Dong-Woo;Lee Sang-Mi;Shin Yu-Rae;Ryu Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.5
    • /
    • pp.795-798
    • /
    • 2006
  • The phosphoenolpyruvate-dependent carbohydrate phosphotransferase system (PTS) is responsible for the simultaneous transfer and phosphorylation of various carbon sources in Escherichia coli. The ptsG gene encoding the enzyme $IICB^{Glc}$, the membrane component of the glucose-specific PTS, is repressed by Mlc and activated by the CRP cAMP complex; various other factors, such as Fis, FruR, and ArcA, are also known to be involved in ptsG regulation. Thus, in an attempt to discover a novel gene affecting the regulation of ptsG, a mutant with a decreased ptsG transcription in the presence of glucose compared with the wild-type strain was screened using transposon random mutagenesis. The mutant was found to have a transposon insertion in yhjV, a putative gene encoding a transporter protein whose function is yet unknown.

Effect of Saliva miltiorrhiza Bunge on Antimicrobial Activity and Resistant Gene Regulation against Methicillin-Resistant Staphylococcus aureus (MRSA)

  • Lee, Ji-Won;Ji, Young-Ju;Lee, Syng-Ook;Lee, In-Seon
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.350-357
    • /
    • 2007
  • This study was conducted in an effort to evaluate the antimicrobial activity and antibiotic-resistant gene regulation from Saliva miltiorrhiza Bunge on methicillin-resistant Staphylococcus aureus (MRSA). A variety of solvent fractions and methanol extracts of S. miltiorrhiza Bunge were tested in order to determine its antimicrobial activities against S. aureus and MRSA. As a result, the hexane fraction of S. miltiorrhiza Bunge evidenced the highest levels of antimicrobial activity against S. aureus and MRSA. The MICs of the hexane fraction against various MRSA specimens were $64. The hexane fraction evidenced inhibitory effects superior to those of the chloroform fraction. The results showed inhibition zones of hexane (16 mm) and chloroform (14 mm) fractions against MRSA KCCM 40511 at $1,000{\mu}g/disc$. The hexane and chloroform fractions inhibited the expression of the resistant genes, mecA, mecR1, and femA in mRNA. Moreover, the results of Western blotting assays indicated that the hexane and chloroform fractions inhibited the expression of the resistant protein, PBP2a. These results reveal that the hexane and chloroform fractions of S. miltiorrhiza Bunge may prove to be a valuable choice for studies targeted toward the development of new antimicrobial agents.

Hormonal Regulation of Leptin, Resistin, and Plasminogen Activator Inhibitor-1 Gene Expression in 3T3-L1 Adipocytes

  • Lee, Hyun-Jung;Kim, Yang-Ha
    • Preventive Nutrition and Food Science
    • /
    • v.9 no.4
    • /
    • pp.336-341
    • /
    • 2004
  • Leptin, resisitn and PAI-1 (plasminogen activator inhibitor-1) are synthesized and secreted by rodent fat cells and recently postulated to be an important link to obesity. This study was conducted to characterize the hormonal regulation of leptin, resistin, and PAI-1 gene expression in the 3T3-L1 adipocytes. The cells were treated with 0.5 $\mu$M insulin, 1 $\mu$M dexamethasone (Dex), or 0.05 $\mu$M triiodothyronine (T3) for 72 hours. The mRNA levels of each peptide were measured by semi-quantitative RT-PCR. The mRNA level of the leptin-producing ob gene was significantly increased by insulin, Dex, and T3 by 3.2-, 3.1- and 2.7-fold, respectively, compared to the control (p < 0.05). The level of resistin mRNA was increased by insulin, Dex, and T3 by 2.7-, 2.5- and 2-fold, respectively, compared to the control (p < 0.05). Likewise, the level of PAI-1 mRNA was significantly increased by insulin, Dex, and T3 compared to the control (p < 0.05). Taken together, our results suggest that insulin, Dex, and T3 may regulate the gene expression of leptin, resistin, and PAI-1 in 3T3-L1 adipocytes.

Involvement of a Gr2a-Expressing Drosophila Pharyngeal Gustatory Receptor Neuron in Regulation of Aversion to High-Salt Foods

  • Kim, Haein;Jeong, Yong Taek;Choi, Min Sung;Choi, Jaekyun;Moon, Seok Jun;Kwon, Jae Young
    • Molecules and Cells
    • /
    • v.40 no.5
    • /
    • pp.331-338
    • /
    • 2017
  • Regulation of feeding is essential for animal survival. The pharyngeal sense organs can act as a second checkpoint of food quality, due to their position between external taste organs such as the labellum which initially assess food quality, and the digestive tract. Growing evidence provides support that the pharyngeal sensory neurons regulate feeding, but much is still unknown. We found that a pair of gustatory receptor neurons in the LSO, a Drosophila adult pharyngeal organ which expresses four gustatory receptors, is involved in feeding inhibition in response to high concentrations of sodium ions. RNAi experiments and mutant analysis showed that the gustatory receptor Gr2a is necessary for this process. This feeding preference determined by whether a food source is perceived as appetizing or not is influenced by nutritional conditions, such that when the animal is hungry, the need for energy dominates over how appealing the food source is. Our results provide experimental evidence that factors involved in feeding function in a context-dependent manner.

Identification of a Novel Function of Extract of Gingko biloba (EGb 761®) as a Regulator of PYY Secretion and FFA4 Activation

  • Kim, Hye Young;Kim, Kyong
    • Natural Product Sciences
    • /
    • v.25 no.2
    • /
    • pp.165-171
    • /
    • 2019
  • Although the functions of a standardized extract of Gingko biloba leaves (EGb $761^{(R)}$) has been reported with regard to neurobiological properties, no attention has been paid to the impact of EGb $761^{(R)}$ on the neuronal regulation of energy homeostasis. To evaluate the hypothesis that EGb $761^{(R)}$ affect the secretion of peptide tyrosine tyrosine (PYY) and the activation of free fatty acid receptor 4 (FFA4), which are involved in the neuronal circuitries that control energy homeostasis by inducing the transfer of information about the influx of energy to the brain, we examined whether EGb $761^{(R)}$ can stimulate PYY secretion in the enteroendocrine NCI-H716 cells and if EGb $761^{(R)}$ can activate FFA4 in FFA4-expressing cells. In NCI-H716 cells, EGb $761^{(R)}$ stimulated PYY secretion and the EGb $761^{(R)}$-induced PYY secretion was involved in the increase in intracellular $Ca^{2+}$ concentration and the activation of FFA4. Furthermore, in FFA4-expressing cells, EGb $761^{(R)}$ activated FFA4. These results suggest that EGb $761^{(R)}$ may affect the control of energy homeostasis via the regulation of PYY secretion and FFA4 activation.