Browse > Article
http://dx.doi.org/10.14348/molcells.2017.0028

Involvement of a Gr2a-Expressing Drosophila Pharyngeal Gustatory Receptor Neuron in Regulation of Aversion to High-Salt Foods  

Kim, Haein (Department of Biological Sciences, Sungkyunkwan University)
Jeong, Yong Taek (Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry)
Choi, Min Sung (Department of Biological Sciences, Sungkyunkwan University)
Choi, Jaekyun (Department of Biological Sciences, Sungkyunkwan University)
Moon, Seok Jun (Department of Oral Biology, BK21 PLUS Project, Yonsei University College of Dentistry)
Kwon, Jae Young (Department of Biological Sciences, Sungkyunkwan University)
Abstract
Regulation of feeding is essential for animal survival. The pharyngeal sense organs can act as a second checkpoint of food quality, due to their position between external taste organs such as the labellum which initially assess food quality, and the digestive tract. Growing evidence provides support that the pharyngeal sensory neurons regulate feeding, but much is still unknown. We found that a pair of gustatory receptor neurons in the LSO, a Drosophila adult pharyngeal organ which expresses four gustatory receptors, is involved in feeding inhibition in response to high concentrations of sodium ions. RNAi experiments and mutant analysis showed that the gustatory receptor Gr2a is necessary for this process. This feeding preference determined by whether a food source is perceived as appetizing or not is influenced by nutritional conditions, such that when the animal is hungry, the need for energy dominates over how appealing the food source is. Our results provide experimental evidence that factors involved in feeding function in a context-dependent manner.
Keywords
Drosophila melanogaster; feeding; gustatory receptor; pharyngeal sense organ;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Choi, J., van Giesen, L., Choi, M.S., Kang, K., Sprecher, S.G., and Kwon, J.Y. (2016). A pair of pharyngeal gustatory receptor neurons regulates caffeine-dependent ingestion in Drosophila Larvae. Front Cell Neurosci. 10, 181.
2 Clyne, P.J., Warr, C.G., and Carlson, J.R. (2000). Candidate taste receptors in Drosophila. Science 287, 1830-1834.   DOI
3 Dahanukar, A., Lei, Y.T., Kwon, J.Y., and Carlson, J.R. (2007). Two Gr genes underlie sugar reception in Drosophila. Neuron 56, 503-516.   DOI
4 Du, E.J., Ahn, T.J., Choi, M.S., Kwon, I., Kim, H.W., Kwon, J.Y., and Kang, K. (2015). The mosquito repellent citronellal directly potentiates drosophila TRPA1, facilitating feeding suppression. Mol. Cells 38, 911-917.   DOI
5 Freeman, E.G., and Dahanukar, A. (2015). Molecular neurobiology of Drosophila taste. Curr. Opin. Neurobiol. 34, 140-148.   DOI
6 Fujii, S., Yavuz, A., Slone, J., Jagge, C., Song, X., and Amrein, H. (2015). Drosophila sugar receptors in sweet taste perception, olfaction, and internal nutrient sensing. Curr. Biol. 25, 621-627.   DOI
7 Gendre, N., Luer, K., Friche, S., Grillenzoni, N., Ramaekers, A., Technau, G.M., and Stocker, R.F. (2004). Integration of complex larval chemosensory organs into the adult nervous system of Drosophila. Development 131, 83-92.   DOI
8 Gong, W.J., and Golic, K.G. (2003). Ends-out, or replacement, gene targeting in Drosophila. Proc. Natl. Acad. Sci. USA 100, 2556-2561.   DOI
9 Jiao, Y., Moon, S.J., and Montell, C. (2007). A Drosophila gustatory receptor required for the responses to sucrose, glucose, and maltose identified by mRNA tagging. Proc. Natl. Acad. Sci. USA 104, 14110-14115.   DOI
10 Jiao, Y., Moon, S.J., Wang, X., Ren, Q., and Montell, C. (2008). Gr64f is required in combination with other gustatory receptors for sugar detection in Drosophila. Curr. Biol. 18, 1797-1801.   DOI
11 Kim, H., Choi, M.S., Kang, K., and Kwon, J.Y. (2016). Behavioral analysis of bitter taste perception in Drosophila larvae. Chem Senses 41, 85-94.   DOI
12 Kwon, J.Y., Dahanukar, A., Weiss, L.A., and Carlson, J.R. (2011). Molecular and cellular organization of the taste system in the Drosophila larva. J. Neurosci. 31, 15300-15309.   DOI
13 LeDue, E.E., Chen, Y.C., Jung, A.Y., Dahanukar, A., and Gordon, M.D. (2015). Pharyngeal sense organs drive robust sugar consumption in Drosophila. Nat. Commun. 6, 6667.   DOI
14 Lee, Y., Moon, S.J., and Montell, C. (2009). Multiple gustatory receptors required for the caffeine response in Drosophila. Proc. Natl. Acad. Sci. USA 106, 4495-4500.   DOI
15 Lee, Y., Moon, S.J., Wang, Y., and Montell, C. (2015). A Drosophila gustatory receptor required for strychnine sensation. Chem. Senses 40, 525-533.   DOI
16 Mishra, D., Miyamoto, T., Rezenom, Y.H., Broussard, A., Yavuz, A., Slone, J., Russell, D.H., and Amrein, H. (2013). The molecular basis of sugar sensing in Drosophila larvae. Curr. Biol. 23, 1466-1471.   DOI
17 Miyamoto, T., Slone, J., Song, X., and Amrein, H. (2012). A fructose receptor functions as a nutrient sensor in the Drosophila brain. Cell 151, 1113-1125.   DOI
18 Moon, S.J., Lee, Y., Jiao, Y., and Montell, C. (2009). A Drosophila gustatory receptor essential for aversive taste and inhibiting male-tomale courtship. Curr. Biol. 19, 1623-1627.   DOI
19 Park, J.H., and Kwon, J.Y. (2011). Heterogeneous expression of Drosophila gustatory receptors in enteroendocrine cells. PLoS ONE 6, e29022.   DOI
20 Robertson, H.M., Warr, C.G., and Carlson, J.R. (2003). Molecular evolution of the insect chemoreceptor gene superfamily in Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 100 Suppl 2, 14537-14542.   DOI
21 Scott, K., Brady, R., Jr., Cravchik, A., Morozov, P., Rzhetsky, A., Zuker, C., and Axel, R. (2001). A chemosensory gene family encoding candidate gustatory and olfactory receptors in Drosophila. Cell 104, 661-673.   DOI
22 Shim, J., Lee, Y., Jeong, Y.T., Kim, Y., Lee, M.G., Montell, C., and Moon, S.J. (2015). The full repertoire of Drosophila gustatory receptors for detecting an aversive compound. Nat. Commun. 6, 8867.   DOI
23 Stafford, J.W., Lynd, K.M., Jung, A.Y., and Gordon, M.D. (2012). Integration of taste and calorie sensing in Drosophila. J. Neurosci. 32, 14767-14774.   DOI
24 Stocker, R.F. (1994). The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 275, 3-26.   DOI
25 Stocker, R.F. (2004). Taste perception: Drosophila - a model of good taste. Curr. Biol. 14, R560-561.   DOI
26 Sweeney, S.T., Broadie, K., Keane, J., Niemann, H., and O'Kane, C.J. (1995). Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341-351.   DOI
27 Tissot, M., and Stocker, R.F. (2000). Metamorphosis in Drosophila and other insects: the fate of neurons throughout the stages. Prog Neurobiol. 62, 89-111.   DOI
28 Vosshall, L.B., and Stocker, R.F. (2007). Molecular architecture of smell and taste in Drosophila. Annu. Rev. Neurosci. 30, 505-533.   DOI
29 Zhang, Y.V., Ni, J., and Montell, C. (2013). The molecular basis for attractive salt-taste coding in Drosophila. Science 340, 1334-1338.   DOI
30 Weiss, L.A., Dahanukar, A., Kwon, J.Y., Banerjee, D., and Carlson, J.R. (2011). The molecular and cellular basis of bitter taste in Drosophila. Neuron 69, 258-272.   DOI