• Title/Summary/Keyword: Food regulation

Search Result 1,107, Processing Time 0.028 seconds

Effect of fructose or sucrose feeding with different levels on oral glucose tolerance test in normal and type 2 diabetic rats

  • Kwon, Sang-Hee;Kim, You-Jin;Kim, Mi-Kyung
    • Nutrition Research and Practice
    • /
    • v.2 no.4
    • /
    • pp.252-258
    • /
    • 2008
  • This study was designed to determine whether acute fructose or sucrose administration at different levels (0.05 g/kg, 0.1 g/kg or 0.4 g/kg body weight) might affect oral glucose tolerance test (OGTT) in normal and type 2 diabetic rats. In OGTT, there were no significant differences in glucose responses between acute fructose- and sucrose-administered groups. However, in normal rats, the AUCs of the blood glucose response for the fructose-administered groups tended to be lower than those of the control and sucrose-administered groups. The AUCs of the lower levels fructose- or sucrose-administered groups tended to be smaller than those of higher levels fructose- or sucrose-administered groups. In type 2 diabetic rats, only the AUC of the lowest level of fructose-administered (0.05 g/kg body weight) group was slightly smaller than that of the control group. The AUCs of fructose-administered groups tended to be smaller than those of the sucrose-administered groups, and the AUCs of lower levels fructose-administered groups tended to be smaller than those fed higher levels of fructose. We concluded from this experiment that fructose has tendency to be more effective in blood glucose regulation than sucrose, and moreover, that smaller amount of fructose is preferred to larger amount. Specifically, our experiments indicated that the fructose level of 0.05 g/kg body weight as dietary supplement was the most effective amount for blood glucose regulation from the pool of 0.05 g/kg, 0.1 g/kg and 0.4 g/kg body weights. Therefore, our results suggest the use of fructose as the substitute sweetener for sucrose, which may be beneficial for blood glucose regulation.

Effects of isorhamnetin on the regulation of mitochondrial function in C2C12 muscle cells (Isorhamnetin의 근육세포 미토콘드리아 기능조절에 미치는 효과)

  • Lee, Mak-Soon;Kim, Yangha
    • Journal of Nutrition and Health
    • /
    • v.54 no.4
    • /
    • pp.335-341
    • /
    • 2021
  • Purpose: Muscle mitochondria play a key role in regulating fatty acid and glucose metabolism. Dysfunction of muscle mitochondria is associated with metabolic diseases such as obesity and type 2 diabetes. Isorhamnetin (ISOR), also known as 3-O-methylquercetin, a quercetin metabolite, is a naturally occurring flavonoid in many plants. This study evaluated the effects of ISOR on the regulation of the mitochondrial function of C2C12 muscle cells. Methods: C2C12 muscle cells were differentiated for 5 days, and then treated in various concentrations of ISOR. Cytotoxicity was determined by assessing cell viability using the water-soluble tetrazolium salt-8 assay principle at different concentrations of ISOR and time points. Levels of the mitochondrial DNA (mtDNA) content and gene expression were measured by quantitative real-time polymerase chain reaction. The citrate synthase (CS) activity was quantified by the enzymatic method. Results: ISOR at a concentration of 10 µM did not show any cytotoxic effects. ISOR increased the mtDNA copy number in a time- or dose-dependent manner. The messenger RNA levels of genes involved in mitochondrial function, such as peroxisome proliferator-activated receptor-γ coactivator-1α, and uncoupling protein 3 were significantly stimulated by the ISOR treatment. The CS activity was also significantly increased in a time- or dose-dependent manner. Conclusion: These results suggest that ISOR enhances the regulation of mitochondrial function, which was at least partially mediated via the stimulation of the mtDNA replication, mitochondrial gene expression, and CS activity in C2C12 muscle cells. Therefore, ISOR may be useful as a potential food ingredient to prevent metabolic diseases-associated muscle mitochondrial dysfunction.

Leptin: the link between adipose tissue and reproductive system

  • Chen, Ming-Dao
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.15-23
    • /
    • 2003
  • Interest in the regulation of body weight and the pathological physiology of obesity has been rekindled by the cloning of the obese(ob) gene and identification of its product, leptin, in 1994. The first publication appeared in Nature and is a milestone of obesity research. The remarkable metabolic effects of leptin in rodents are: a) inhibition of food intake, b) stimulation of energy expenditure, and c) reversal of obesity. These effects, though mostly desirable, have not been fully demonstrated in humans. The central action of leptin in the regulation of body weight includes two pathways in rodents: a) When the body weight increasing, more leptin is secreted from adipose tissue, which acts on hypothalamus, probably through a POMC or MSH pathway via M4 receptor, initiates a series of response to obesity, i.e. sympathetic tone increased, energy expenditure enhanced and food intake reduced. b) When body weight reduced, leptin concentration decreased with the shrinkage of fat mass, which may also act on the hypothalamus, probably through a NPY-Y5 receptor pathway. Then a cascade of response to hungry was induced, i.e. increase of parasympathetic tone and food intake, decrease of energy expenditure and body temperature, as well as shut-down of the reproductive function.

  • PDF

Repressed Quorum Sensing by Overexpressing LsrR Hampers Salmonella Evasion from Oxidative Killing Within Macrophages

  • Choi, Jeong-Joon;Park, Joo-Won;Ryu, Sang-Ryeol
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.12
    • /
    • pp.1624-1629
    • /
    • 2010
  • Bacterial cell-to-cell communication, termed quorum sensing (QS), leads to coordinated group behavior in a cell-density-dependent fashion and controls a variety of physiological processes including virulence gene expression. The repressor of the lsr operon, LsrR, is the only known regulator of LuxS/AI-2-mediated QS in Salmonella. Although lack of lsrR did not result in noticeable differences in Salmonella survival, the down-regulation of QS as a result of lsrR overexpression decreased Salmonella survival within macrophages. We found that impaired growth of Salmonella overexpressing lsrR within macrophages was due largely to its hypersensitivity to NADPH-dependent oxidative stress. This, in turn, was a result of decreased expression of genes involved in the oxidative stress response, such as sodA, sodCI, and sodCII, when lsrR was overexpressed. These results suggest that down-regulation of QS by excess LsrR can lower Salmonella virulence by hampering Salmonella evasion from oxidative killing within macrophages.

Effect of Apoptosis Induction of Ailanthus altissima on Human Lung Carcinoma Cells

  • Hwang, Yu-Jin;Woo, Hye-Im;Kim, Inhye;Park, Dong-Sik;Kim, Jaehyun;Om, Ae-Son;Hwang, Kyung-A
    • Journal of agriculture & life science
    • /
    • v.45 no.5
    • /
    • pp.91-96
    • /
    • 2011
  • We investigated the inhibitory effects of solvent extracts from Ailanthus altissima in A549 human lung cancer cell. A. altissima has been recognized as a traditional healthy food due to its various biological activities against hypertension, strokes, fever, pain, neuralgia, inflammation, and cancer effects. Recently, it has been reported that the extracts of various wild vegetables show strong anti-cancer properties by induction of apoptosis. However, the mechanisms of their cytotoxicity in human lung cancer cells have been poorly understood. The present study was investigated the effects of solvent extracts from A. altissima on cell growth and apoptosis on A549 human lung cancer cells. A treatment of A. altissima inhibited the growth of A549 cells in a dose-dependent manner by inducing apoptosis. Especially, the chloroform fraction showed the highest anti-cancer effect among five kinds of fractions. And also, induction of apoptosis by chloroform fraction were associated with down-regulation of Bcl-2, and up-regulation of pro-apoptotic Bax expression. From these results, A. altissima may have a therapeutic potential in human lung cancer cells and as a functional food.

Combined Non-Thermal Microbial Inactivation Techniques to Enhance the Effectiveness of Starter Cultures for Kimchi Fermentation

  • Su-Ji Kim;Sanghyun Ha;Yun-Mi Dang;Ji Yoon Chang;So Yeong Mun;Ji-Hyoung Ha
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.3
    • /
    • pp.622-633
    • /
    • 2024
  • For quality standardization, the application of functional lactic acid bacteria (LAB) as starter cultures for food fermentation is a well-known method in the fermented food industry. This study assessed the effect of adding a non-thermally microbial inactivated starter culture to kimchi, a traditional Korean food, in standardizing its quality. In this study, pretreatment based on sterilization processes, namely, slightly acidic electrolyzed water (SAEW) disinfection and ultraviolet C light-emitting diode (UVC-LED) of raw and subsidiary kimchi materials were used to reduce the initial microorganisms in them, thereby increasing the efficiency and value of the kimchi LAB starter during fermentation. Pretreatment sterilization effectively suppressed microorganisms that threatened the sanitary value and quality of kimchi. In addition, pretreatment based on sterilization effectively reduced the number of initial microbial colonies in kimchi, creating an environment in which kimchi LAB starters could settle or dominate, compared to non-sterilized kimchi. These differences in the initial microbial composition following the sterilization process and the addition of kimchi LAB starters led to differences in the metabolites that positively affect the taste and flavor of kimchi. The combined processing technology used in our study, that is, pre-sterilization and LAB addition, may be a powerful approach for kimchi quality standardization.

Vitamin A Improves Hyperglycemia and Glucose-Intolerance through Regulation of Intracellular Signaling Pathways and Glycogen Synthesis in WNIN/GR-Ob Obese Rat Model.

  • Jeyakumar, Shanmugam M.;Sheril, Alex;Vajreswari, Ayyalasomayajula
    • Preventive Nutrition and Food Science
    • /
    • v.22 no.3
    • /
    • pp.172-183
    • /
    • 2017
  • Vitamin A and its metabolites modulate insulin resistance and regulate stearoyl-CoA desaturase 1 (SCD1), which are also known to affect insulin resistance. Here, we tested, whether vitamin A-mediated changes in insulin resistance markers are associated with SCD1 regulation or not. For this purpose, 30-week old male lean and glucose-intolerant obese rats of WNIN/GR-Ob strain were given either a stock or vitamin A-enriched diet, i.e. 2.6 mg or 129 mg vitamin A/kg diet, for 14 weeks. Compared to the stock diet, vitamin A-enriched diet feeding improved hyperglycemia and glucose-clearance rate in obese rats and no such changes were seen in lean rats receiving identical diets. These changes were corroborated with concomitant increase in circulatory insulin and glycogen levels of liver and muscle (whose insulin signaling pathway genes were up-regulated) in obese rats. Further, the observed increase in muscle glycogen content in these obese rats could be explained by increased levels of the active form of glycogen synthase, the key regulator of glycogen synthesis pathway, possibly inactivated through increased phosphorylation of its upstream inhibitor, glycogen synthase kinase. However, the unaltered hepatic SCD1 protein expression (despite decreased mRNA level) and increased muscle-SCD1 expression (both at gene and protein levels) suggest that vitamin A-mediated changes on glucose metabolism are not associated with SCD1 regulation. Chronic consumption of vitamin A-enriched diet improved hyperglycemia and glucose-intolerance, possibly, through the regulation of intracellular signaling and glycogen synthesis pathways of muscle and liver, but not associated with SCD1.

$\beta$-Alanine Induced Down-Regulation of the Taurine Transporter Activity in the Human Colon Carcinoma Cell Line (HT-29) (인체 소장상피세포주 모델(HT-29)에서 $\beta$-알라닌이 타우린수송체 활성에 미치는 영향)

  • 박태선;윤미영;정한나;이해미
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.30 no.2
    • /
    • pp.314-319
    • /
    • 2001
  • In the present study, effects of $\beta$-alanine, a known taurine antagonist for its structural similarity, on the adaptive regulation and kinetic behavior of the taurine transporter were investigated in the HT-29, human colon carcinoma cell line. Pretreatment of the cell with $\beta$-alanine(10mM) for varying periods from 3 to 30 hrs significantly reduced the taurine uptake compared to the value for control cells. This decrease in the taurine transporter activity was dependent on the incubation time with $\beta$-alanine, and the maximal down-regulation of the transporter activity was observed in cells pretreated with $\beta$-alanine for 24 hrs (25% of the control value, p<0.01). The taurine transporter appears to bind exclusively with $\beta$-alanine in the HT-29 cells since the same concentration of $\alpha$-alanine added in the culture medium for 24 hrs did not influence the taurine uptake. Kinetic analyses of the taurine transporter activity was performed in the HT-29 cell line with varying taurine concentration (5~60$\mu$M) in the uptake medium. Active taurine uptake was significantly lower in $\beta$-alanine pretreated cells compared to the value for control cells in the range of taurine concentration used in the experiment (p<0.001). The cells pretreated with $\beta$-alanine showed a 50% lower maximal velocity (Vmax, 1.7$\pm$2.0 nmole.mg $protein^{-1}$.$30min^{-1}$), and a 99% higher Michaelis constant (Km, 40.3$\pm$7.6$\mu$M) than the control values (3.3$\pm$1.9 nmole.mg $protein^{-1}$.$30min^{-1}$, and 20.3$\pm$2.1$\mu$M, respectively). These results on kinetic data suggest that $\beta$-alanine induced down-regulation of the taurine transporter activity was associated with decreases in both maximal velocity and affinity of the transporter.

  • PDF

Photo-aging regulation effects of newly bred Green ball apple (신품종 그린볼 사과의 광노화인자 조절효과)

  • Lee, Eun-Ho;Lee, Seung-Yeol;Jung, Hee-Young;Kang, In-Kyu;Ahn, Dong-Hyun;Cho, Young-Je
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.75-82
    • /
    • 2020
  • In this study, extracts from the Green ball apple peel (GBE) and the newly bred green ball apple from Korea showed inhibition effects on photo-aging factor regulation associated with skin aging. To investigate the inhibition effect on photo-aging factor regulation in skin, GBE was treated with UVB to induce photo-aging related factors in CCD986sk fibroblast cells. Photo-aging factor regulation effects showed that GBE inhibited UVB-stimulated matrix metalloproteinase (MMP)-1 and MMP-9 protein synthesis in collagen type I alpha 2 chain (COL1A2), MMP-1, MMP-9, and tissue inhibitors of metalloproteinase (TIMP)-1 protein expression. The expression of COL1A2 and TIMP-1 protein was significantly increased. The mRNA expression levels of COL1A2, MMP-1, MMP-9, hyaluronan synthase (HAS)2, transforming growth factor (TGF)-β, and TIMP-1 were decreased by GBE. The expression of TIMP-1 and TGF-β, which are regulators involved in matrix metalloproteinase and type I procollagen expression, was found to increase with increasing expression of COL1A2. The expression of HAS2, which is involved in the production of hyaluronic acid, one of the structural proteins constituting the skin, was also confirmed. Therefore, GBE showed excellent efficacy against photo-aging factor regulation and could be used as functional material to prevent and treat skin aging.

Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells

  • Chu, Chun;Gao, Xiang;Li, Xiang;Zhang, Xiaoying;Ma, Ruixin;Jia, Ying;Li, Dahong;Wang, Dongkai;Xu, Fanxing
    • Biomolecules & Therapeutics
    • /
    • v.28 no.2
    • /
    • pp.163-171
    • /
    • 2020
  • Silibinin exhibits antidiabetic potential by preserving the mass and function of pancreatic β-cells through up-regulation of estrogen receptor-α (ERα) expression. However, the underlying protective mechanism of silibinin in pancreatic β-cells is still unclear. In the current study, we sought to determine whether ERα acts as the target of silibinin for the modulation of antioxidative response in pancreatic β-cells under high glucose and high fat conditions. Our in vivo study revealed that a 4-week oral administration of silibinin (100 mg/kg/day) decreased fasting blood glucose with a concurrent increase in levels of serum insulin in high-fat diet/streptozotocin-induced type 2 diabetic rats. Moreover, expression of ERα, NF-E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in pancreatic β-cells in pancreatic islets was increased by silibinin treatment. Accordingly, silibinin (10 μM) elevated viability, insulin biosynthesis, and insulin secretion of high glucose/palmitate-treated INS-1 cells accompanied by increased expression of ERα, Nrf2, and HO-1 as well as decreased reactive oxygen species production in vitro. Treatment using an ERα antagonist (MPP) in INS-1 cells or silencing ERα expression in INS-1 and NIT-1 cells with siRNA abolished the protective effects of silibinin. Our study suggests that silibinin activates the Nrf2-antioxidative pathways in pancreatic β-cells through regulation of ERα expression.