Browse > Article
http://dx.doi.org/10.4062/biomolther.2019.071

Involvement of Estrogen Receptor-α in the Activation of Nrf2-Antioxidative Signaling Pathways by Silibinin in Pancreatic β-Cells  

Chu, Chun (Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University)
Gao, Xiang (Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University)
Li, Xiang (Qiqihaer Middle School)
Zhang, Xiaoying (Department of Food Quality and Safety, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University)
Ma, Ruixin (Department of Food Quality and Safety, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University)
Jia, Ying (Department of Food Quality and Safety, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University)
Li, Dahong (Department of Natural Products Chemistry, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University)
Wang, Dongkai (Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University)
Xu, Fanxing (Wuya College of Innovation, Shenyang Pharmaceutical University)
Publication Information
Biomolecules & Therapeutics / v.28, no.2, 2020 , pp. 163-171 More about this Journal
Abstract
Silibinin exhibits antidiabetic potential by preserving the mass and function of pancreatic β-cells through up-regulation of estrogen receptor-α (ERα) expression. However, the underlying protective mechanism of silibinin in pancreatic β-cells is still unclear. In the current study, we sought to determine whether ERα acts as the target of silibinin for the modulation of antioxidative response in pancreatic β-cells under high glucose and high fat conditions. Our in vivo study revealed that a 4-week oral administration of silibinin (100 mg/kg/day) decreased fasting blood glucose with a concurrent increase in levels of serum insulin in high-fat diet/streptozotocin-induced type 2 diabetic rats. Moreover, expression of ERα, NF-E2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1) in pancreatic β-cells in pancreatic islets was increased by silibinin treatment. Accordingly, silibinin (10 μM) elevated viability, insulin biosynthesis, and insulin secretion of high glucose/palmitate-treated INS-1 cells accompanied by increased expression of ERα, Nrf2, and HO-1 as well as decreased reactive oxygen species production in vitro. Treatment using an ERα antagonist (MPP) in INS-1 cells or silencing ERα expression in INS-1 and NIT-1 cells with siRNA abolished the protective effects of silibinin. Our study suggests that silibinin activates the Nrf2-antioxidative pathways in pancreatic β-cells through regulation of ERα expression.
Keywords
Diabetes mellitus; Silibinin; Pancreatic ${\beta}$-cell; Estrogen receptor-${\alpha}$; Antioxidative response;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Kawamori, D. (2017) Exploring the molecular mechanisms underlying ${\alpha}$- and ${\beta}$-cell dysfunction in diabetes. Diabetol. Int. 8, 248-256.   DOI
2 Khan, N. M., Haseeb, A., Ansari, M. Y., Devarapalli, P.,Haynie, S. and Haqqi, T. M. (2017) Wogonin, a plant derived small molecule, exerts potent anti-inflammatory and chondroprotective effects through the activation of ROS/ERK/Nrf2 signaling pathways in human osteoarthritis chondrocytes. Free Radic. Biol. Med. 106, 288-301.   DOI
3 Lee, S. J., Choi, S. E., Jung, I. R., Lee, K. W. and Kang, Y. (2013) Protective effect of nicotinamide on high glucose/palmitate-induced glucolipotoxicity to INS-1 beta cells is attributed to its inhibitory activity to sirtuins. Arch. Biochem. Biophys. 535, 187-196.   DOI
4 Mackenbach, J. D., den Braver, N. R. and Beulens, J. W. J. (2018) Spouses, social networks and other upstream determinants of type 2 diabetes mellitus. Diabetologia 61, 1517-1521.   DOI
5 Morillas-Ruiz, J. M., Garcia, J. A. V., Lopez, F. J., Vidal-Guevara, M. L. and Zafrilla, P. (2006) Effects of polyphenolic antioxidants on exercise-induced oxidative stress. Clin. Nutr. 25, 444-453.   DOI
6 Nabavi, S. F., Barber, A. J., Spagnuolo, C., Russo, G. L., Daglia, M., Nabavi, S. M. and Sobarzo-Sanchez, E. (2016) Nrf2 as molecular target for polyphenols: a novel therapeutic strategy in diabetic retinopathy. Crit. Rev. Clin. Lab. Sci. 53, 293-312.   DOI
7 Nadal. A., Alonso-Magdalena, P., Soriano, S., Quesada, I. and Ropero, A. B. (2009) The pancreatic ${\beta}$-cell as a target of estrogens and xenoestrogens: implications for blood glucose homeostasis and diabetes. Mol. Cell. Endocrinol. 304, 63-68.   DOI
8 Pi, J., Zhang, Q., Fu, J., Woods, C. G., Hou, Y., Corkey, B. E., Collins, S. and Andersen,M. E. (2010) ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function. Toxicol. Appl. Pharmacol. 244, 77-83.   DOI
9 Alonsomagdalena, P., Ropero, A. B., Carrera, M. P., Cederroth, C. R., Baquie, M., Gauthier, B. R., Nef, S., Stefani, E. and Nadal, A. (2008) Pancreatic insulin content regulation by the estrogen receptor $ER{\alpha}$. PLoS ONE 3, e2069.   DOI
10 Chen, K., Zhao, L., He, H., Wan, X., Wang, F. and Mo, Z. (2014) Silibinin protects beta cells from glucotoxicity through regulation of the insig-1/srebp-1c pathway. Int. J. Mol. Med. 34, 1073-1080.   DOI
11 Chu, C., Li, D., Zhang, S., Ikejima, T.,Jia, Y., Wang, D. and Xu, F. (2018) Role of silibinin in the management of diabetes mellitus and its complications. Arch. Pharm. Res. 41, 785-796.   DOI
12 Corchete, P. (2008) Silybum marianum (L.) Gaertn: the source of silymarin. In Bioactive Molecules and Medicinal Plants, pp. 123-148. Springer.
13 Govindaraj, J. and Sorimuthu Pillai, S. (2015) Rosmarinic acid modulates the antioxidant status and protects pancreatic tissues from glucolipotoxicity mediated oxidative stress in high-fat diet: Streptozotocin-induced diabetic rats. Mol. Cell. Biochem. 404, 143-159.   DOI
14 Gerber, P. A. and Rutter, G. A. (2017) The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxid. Redox. Signal. 26, 501-518.   DOI
15 Ghorbani, A. (2013) Best herbs for managing diabetes: a review of clinical studies. Braz. J. Pharm. Sci. 49, 413-422.   DOI
16 Giannarelli, R., Aragona, M., Coppelli, A. and Del Prato, S. (2003) Reducing insulin resistance with metformin: the evidence today. Diabetes Metab. 29, 6S28-6S35.   DOI
17 Hidalgo-Lanussa, O., Avila-Rodriguez, M., Baez-Jurado, E., Zamudio, J., Echeverria, V., Garcia-Segura, L. M. and Barreto, G. E. (2018) Tibolone reduces oxidative damage and inflammation in microglia stimulated with palmitic acid through mechanisms involving estrogen receptor beta. Mol. Neurobiol. 55, 5462-5477.   DOI
18 International Diabetes Federation (2017) IDF Diabetes Atlas (8th ed). IDF, Brussels.
19 Hung, H.-Y., Qian, K., Morris-Natschke, S. L., Hsu, C.-S. and Lee, K.-H. (2012) Recent discovery of plant-derived anti-diabetic natural products. Nat. Prod. Rep. 29, 580-606.   DOI
20 Hwang, Y. P. and Jeong, H. G. (2010) Ginsenoside Rb1 protects against 6-hydroxydopamine-induced oxidative stress by increasing heme oxygenase-1 expression through an estrogen receptorrelated PI3K/Akt/Nrf2-dependent pathway in human dopaminergic cells. Toxicol. Appl. Pharm. 242, 18-28.   DOI
21 Jeong, J. C., Shin, W. Y., Kim, T. H., Kwon, C. H., Kim, J. H., Kim, Y. K. and Kim, K. H. (2011) Silibinin induces apoptosis via calpain-dependent aif nuclear translocation in U87MG human glioma cell death. J. Exp. Clin. Cancer Res. 30, 44.   DOI
22 Tahrani, A. A., Barnett, A. H. and Bailey, C. J. (2016) Pharmacology and therapeutic implications of current drugs for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 12, 566-592.   DOI
23 Robertson, R. (2006) Oxidative stress and impaired insulin secretion in type 2 diabetes. Curr. Opin. Pharmacol. 6, 615-619.   DOI
24 Rochette, L., Zeller, M., Cottin, Y. and Vergely, C. (2014) Diabetes, oxidative stress and therapeutic strategies. Biochim. Biophys. Acta 1840, 2709-2729.   DOI
25 Saad, B., Zaid, H., Shanak, S. and Kadan, S. (2017) Anti-Diabetes and Anti-Obesity Medicinal Plants and Phytochemicals. Springer International Publishing.
26 Shulman, G. I. (2014) Ectopic fat in insulin resistance, dyslipidemia, and cardiometabolic disease. N. Engl. J. Med. 371, 1131-1141.   DOI
27 Sone, H. and Kagawa, Y. (2005) Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat dietinduced diabetic mice. Diabetologia 48, 58-67.   DOI
28 Tiano, J. P. and Mauvais-Jarvis, F. (2012) Importance of oestrogen receptors to preserve functional ${\beta}$-cell mass in diabetes. Nat. Rev. Endocrinol. 8, 342-351.   DOI
29 Voroneanu, L., Nistor, I., Dumea, R., Apetrii, M. and Covic, A. (2016) Silymarin in type 2 diabetes mellitus: a systematic review and meta-analysis of randomized controlled trials. J. Diabetes Res. 2016, 5147468.
30 Wang, Q., Liu, M., Liu, W. W., Hao, W. B., Tashiro, S., Onodera, S. and Ikejima, T. (2012) In vivo recovery effect of silibinin treatment on streptozotocin-induced diabetic mice is associated with the modulations of sirt-1 expression and autophagy in pancreatic beta-cell. J. Asian Nat. Prod. Res. 14, 413-423.   DOI
31 Zheng, N., Zhang, P., Huang, H., Liu, W., Hayashi, T., Zang, L., Zhang, Y., Liu, L., Xia, M., Tashiro, S.-I., Onodera, S. and Ikejima, T. (2015) $ER{\alpha}$ down-regulation plays a key role in silibinin-induced autophagy and apoptosis in human breast cancer MCF-7 cells. J. Pharmacol. Sci. 128, 97-107.   DOI
32 Wu, J., Williams, D., Walter, G. A., Thompson, W. E. and Sidell, N. (2014) Estrogen increases Nrf2 activity through activation of the PI3K pathway in MCF-7 breast cancer cells. Exp. Cell Res. 328, 351-360.   DOI
33 Xu, F., Yang, J., Negishi, H., Sun, Y., Li, D., Zhang, X., Hayashi, T., Gao, M., Ikeda, K. and Ikejima, T. (2018) Silibinin decreases hepatic glucose production through the activation of gut-brain-liver axis in diabetic rats. Food Funct. 9, 4926-4935.   DOI
34 Yang, D. K. and Kang, H. S. (2018) Anti-diabetic effect of cotreatment with quercetin and resveratrol in streptozotocin-induced diabetic rats. Biomol. Ther. (Seoul) 26, 130-138.   DOI
35 Yang, J., Sun, Y., Xu, F., Liu, W., Hayashi, T., Onodera, S., Tashiro, S. I. and Ikejima, T. (2018) Involvement of estrogen receptors in silibinin protection of pancreatic ${\beta}$-cells from $TNF{\alpha}$- or IL-$1{\beta}$-induced cytotoxicity. Biomed. Pharmacother. 102, 344-353.   DOI
36 Zhang, T., Liang, X., Shi, L., Wang, L., Chen, J., Kang, C., Zhu, J. and Mi, M. (2013) Estrogen receptor and PI3K/Akt signaling pathway involvement in S-(-)equol-induced activation of Nrf2/ARE in endothelial cells. PLoS ONE 8, e79075.   DOI
37 Zou, H., Zhu, X. X., Zhang, G. B., Ma, Y., Wu, Y. and Huang, D. S. (2017) Silibinin: an old drug for hematological disorders. Oncotarget 8, 89307-89314.   DOI