• 제목/요약/키워드: Foggy image

검색결과 20건 처리시간 0.02초

Development of Camera-Based Measurement System for Crane Spreader Position using Foggy-degraded Image Restoration Technique

  • Kim, Young-Bok
    • 한국항해항만학회지
    • /
    • 제35권4호
    • /
    • pp.317-321
    • /
    • 2011
  • In this paper, a foggy-degraded image restoration technique with a physics-based degradation model is proposed for the measurement system. When the degradation model is used for the image restoration, its parameters and a distance from the spreader to the camera have to be previously known. In the proposed image restoration technique, the parameters are estimated from variances and averages of intensities on two foggy-degraded landmark images taken at different distances. Foggy-degraded images can be restored with the estimated parameters and the distance measured by the measurement system. On the basis of the experimental results, the performance of the proposed foggy-degraded image restoration technique was verified.

미디언 필터 기반의 Retinex 알고리즘을 통한 안개 영상에서의 차선검출 기법 (Lane detection method using Median Filter based Retinex Algorithm in Foggy Image)

  • 김영탁;한헌수
    • 한국컴퓨터정보학회논문지
    • /
    • 제15권8호
    • /
    • pp.31-39
    • /
    • 2010
  • 본 논문은 도로 영상에서 안개의 존재 여부를 판단하여 미디언 필터를 기반으로 하는 Retinex 알고리즘을 적용하고 영상을 개선한 후 최종적으로 차선을 검출하는 알고리즘을 제안한다. 영상 내에서 특정 관심 영역을 지정하고 해당 영역에서의 히스토그램을 분석하여 안개의 존재 여부를 판단한다. 안개 낀 영상으로 판단되는 경우 영상의 화질개선을 위해 미디언 필터를 기반으로 하는 Retinex 알고리즘을 이용해 대비도를 향상시킨다. 기존의 Retinex 알고리즘은 가우시안 필터를 적용하기 때문에 연산에 많은 시간이 걸리며, 특히 도로의 안개 영상에서는 차선의 특징이 두드러지지 않았다. 본 논문에서는 가우시안 필터를 미디언 필터를 바꿈으로써 도로의 안개 영상에 대해서 강인한 대비도 향상 효과를 얻을 수 있었다. 개선된 영상에서 차선에 대한 정보를 획득하기 위해서 이중 임계치를 이용한 이진화를 수행하고 라벨링을 통해서 검출된 차선의 크기, 방향 등의 정보를 계산하여 최종적인 차선을 검출한다. 제안한 알고리즘의 성능은 다양한 환경의 도로를 주행하면서 획득한 연속적인 영상들에 적용함으로써 제안하는 알고리즘의 효율성 및 우수성을 평가하였다.

Real-Time Visible-Infrared Image Fusion using Multi-Guided Filter

  • Jeong, Woojin;Han, Bok Gyu;Yang, Hyeon Seok;Moon, Young Shik
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권6호
    • /
    • pp.3092-3107
    • /
    • 2019
  • Visible-infrared image fusion is a process of synthesizing an infrared image and a visible image into a fused image. This process synthesizes the complementary advantages of both images. The infrared image is able to capture a target object in dark or foggy environments. However, the utility of the infrared image is hindered by the blurry appearance of objects. On the other hand, the visible image clearly shows an object under normal lighting conditions, but it is not ideal in dark or foggy environments. In this paper, we propose a multi-guided filter and a real-time image fusion method. The proposed multi-guided filter is a modification of the guided filter for multiple guidance images. Using this filter, we propose a real-time image fusion method. The speed of the proposed fusion method is much faster than that of conventional image fusion methods. In an experiment, we compare the proposed method and the conventional methods in terms of quantity, quality, fusing speed, and flickering artifacts. The proposed method synthesizes 57.93 frames per second for an image size of $320{\times}270$. Based on our experiments, we confirmed that the proposed method is able to perform real-time processing. In addition, the proposed method synthesizes flicker-free video.

Visibility detection approach to road scene foggy images

  • Guo, Fan;Peng, Hui;Tang, Jin;Zou, Beiji;Tang, Chenggong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권9호
    • /
    • pp.4419-4441
    • /
    • 2016
  • A cause of vehicle accidents is the reduced visibility due to bad weather conditions such as fog. Therefore, an onboard vision system should take visibility detection into account. In this paper, we propose a simple and effective approach for measuring the visibility distance using a single camera placed onboard a moving vehicle. The proposed algorithm is controlled by a few parameters and mainly includes camera parameter estimation, region of interest (ROI) estimation and visibility computation. Thanks to the ROI extraction, the position of the inflection point may be measured in practice. Thus, combined with the estimated camera parameters, the visibility distance of the input foggy image can be computed with a single camera and just the presence of road and sky in the scene. To assess the accuracy of the proposed approach, a reference target based visibility detection method is also introduced. The comparative study and quantitative evaluation show that the proposed method can obtain good visibility detection results with relatively fast speed.

시지각적 통계 특성을 활용한 안개 영상의 가시성 예측 모델 (No-Reference Visibility Prediction Model of Foggy Images Using Perceptual Fog-Aware Statistical Features)

  • 최락권;유재희
    • 전자공학회논문지
    • /
    • 제51권4호
    • /
    • pp.131-143
    • /
    • 2014
  • 본 논문에서는 자연 이미지가 갖는 통계적 일관성과 안개를 인식하는 시지각적 통계 특성을 이용하여 단일 안개 영상에서, 안개가 없는 참조 영상과의 비교 없이, 시지각적으로 안개 영상의 가시성을 예측한다. 제안하는 모델은 기존 안개 영상의 가시성 예측 방법들이 불가피하게 사용했던 추가 정보들, 예를 들면, 다수의 다양한 안개 영상, 차량 탑재 카메라의 지리적 위치 정보, 사람의 가시성 평가에 대한 학습 결과, 도로 선 혹은 교통 신호와 같이 안개 영상의 돋보이는 특정 물체 정보 등을 사용하지 않는다. 본 논문의 모델은 오직 테스트 안개 영상이 자연 현상에 의한 안개 영상 혹은 안개가 전혀 없는 영상에서 일관적으로 발견되는 통계적 특성으로부터 얼마나 떨어져 있는지 측정함으로써 안개 영상의 가시성을 예측한다. 시지각적으로 안개를 인식하여 일관된 통계를 나타내는 특징 인자들은 공간상의 자연 이미지 통계 모델과 안개 영상의 특징 (명암대비의 감소, 색상과 채도의 감소, 밝기의 증가)으로부터 유도된다. 제안하는 모델은 안개 영상의 전체 영역에 대한 가시성뿐만 아니라 각 관심 영역에서 패치 크기에 따른 지역적 안개 영상의 가시성도 예측할 수 있다. 본 모델의 성능분석을 위하여 사람이 직접 인지하는 가시성 측정 실험을 100 장의 다양한 안개 영상에 대해 수행하였다. 본 논문에서 제시한 모델을 통해 예측된 안개 영상의 가시성과 사람이 체감한 안개 영상의 가시성을 비교한 결과, 둘 사이에 매우 높은 상관관계가 있는 것으로 평가되었다. 본 논문이 제안하는 무참조 안개 영상의 가시성 예측 모델은 사람의 시지각적 특성을 활용한 새로운 방법으로, 향후 안개 영상의 가시성 향상 알고리듬 개발과 선 개발된 안개 제거 및 가시성 향상 알고리듬들의 성능을 정확히 평가할 수 있는 새로운 측정방법 개발 등에 매우 유용할 것으로 기대된다.

Image Enhancement Algorithm and its Application in Image Defogging

  • Jun Cao
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.465-473
    • /
    • 2023
  • An image enhancement algorithm and image defogging method are studied in this paper. The formation of fog and the characteristics of fog image are analyzed, and the fog image is preprocessed by histogram equalization method; then the additive white noise is removed by foggy image attenuation model, the atmospheric scattering physical model is constructed, the image detail characteristics are enhanced by image enhancement method, and the visual effect of defogging image is enhanced by guided filtering method. The proposed method has a good defogging effect on the image. When the number of training iterations is 3,000, the peak signal-to-noise ratio of the proposed method is 43.29 dB and the image structure similarity is 0.9616, indicating excellent image defogging effect.

Local Contrast와 빛 전달량 기반 Single Image의 안개 정도 측정 방법 (Local contrast and Transmission Based Fog Degree Measurement in Single Image)

  • 이근만;김원하
    • 방송공학회논문지
    • /
    • 제22권3호
    • /
    • pp.375-380
    • /
    • 2017
  • 본 논문은 single image에서 측정한 빛 전달량 값과 local contrast 값을 사용하여 안개 량을 수치화하는 방법을 제안한다. 제안하는 방법은 빛 전달량 값을 사용하여 안개로 예측되는 지역을 추정하고, 추정된 안개 예측 지역의 넓이와 해당 지역의 local contrast 크기의 범위를 사용하여 안개 정도를 수치화 한다. single image에서 측정 가능한 안개 의 물리적 특성들을 고려하였기 때문에 기존의 안개 검출 알고리즘들이 구분하지 못했던 영상들에서도 안개 량을 정확하게 측정하였다. 실제 빛의 산란 정도를 측정하는 감광 계수 측정계를 사용하여 측정한 안개 량과 제안하는 방법의 수치를 비교했을 때, 다양한 환경과 물체를 포함한 영상들에서 95%이상의 정확도로 안개 정도를 수치화 하였다. 또한 빛 전달량 추정 과정에서 local contrast 값을 추출하여 사용하기 때문에 기존의 빛 전달량을 측정하는 방법에서 복잡도를 거의 증가시키지 않는다.

SWIR 이미지 센서 기술개발 동향 및 응용현황

  • 이재웅
    • 세라미스트
    • /
    • 제21권2호
    • /
    • pp.59-74
    • /
    • 2018
  • Imaging in the Short Wave Infrared (SWIR) provides several advantages over the visible and near-infrared regions: enhanced image resolution in in foggy or dusty environments, deep tissue penetration, surveillance capabilities with eye-safe lasers, assessment of food quality and safety. Commercially available SWIR imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits(ROIC) by indium bump bonding Infrared image sensors made of solution-processed quantum dots have recently emerged as candidates for next-generation SWIR imagers. They combine ease of processing, tunable optoelectronic properties, facile integration with Si-based ROIC and good performance. Here, we review recent research and development trends of various application fields of SWIR image sensors and nano-materials capable of absorption and emission of SWIR band. With SWIR sensible nano-materials, new type of SWIR image sensor can replace current high price SWIR imagers.

Image Dehazing Enhancement Algorithm Based on Mean Guided Filtering

  • Weimin Zhou
    • Journal of Information Processing Systems
    • /
    • 제19권4호
    • /
    • pp.417-426
    • /
    • 2023
  • To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.

Haziness Degree Evaluator를 적용한 Hazy Particle Map 기반 자동화 안개 제거 방법 (Hazy Particle Map-based Automated Fog Removal Method with Haziness Degree Evaluator Applied)

  • 심휘보;강봉순
    • 한국멀티미디어학회논문지
    • /
    • 제25권9호
    • /
    • pp.1266-1272
    • /
    • 2022
  • With the recent development of computer vision technology, image processing-based mechanical devices are being developed to realize autonomous driving. The camera-taken images of image processing-based machines are invisible due to scattering and absorption of light in foggy conditions. This lowers the object recognition rate and causes malfunction. The safety of the technology is very important because the malfunction of autonomous driving leads to human casualties. In order to increase the stability of the technology, it is necessary to apply an efficient haze removal algorithm to the camera. In the conventional haze removal method, since the haze removal operation is performed regardless of the haze concentration of the input image, excessive haze is removed and the quality of the resulting image is deteriorated. In this paper, we propose an automatic haze removal method that removes haze according to the haze density of the input image by applying Ngo's Haziness Degree Evaluator (HDE) to Kim's haze removal algorithm using Hazy Particle Map. The proposed haze removal method removes the haze according to the haze concentration of the input image, thereby preventing the quality degradation of the input image that does not require haze removal and solving the problem of excessive haze removal. The superiority of the proposed haze removal method is verified through qualitative and quantitative evaluation.