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Abstract 
 

Visible-infrared image fusion is a process of synthesizing an infrared image and a visible 
image into a fused image. This process synthesizes the complementary advantages of both 
images. The infrared image is able to capture a target object in dark or foggy environments. 
However, the utility of the infrared image is hindered by the blurry appearance of objects. On 
the other hand, the visible image clearly shows an object under normal lighting conditions, but 
it is not ideal in dark or foggy environments. In this paper, we propose a multi-guided filter and 
a real-time image fusion method. The proposed multi-guided filter is a modification of the 
guided filter for multiple guidance images. Using this filter, we propose a real-time image 
fusion method. The speed of the proposed fusion method is much faster than that of 
conventional image fusion methods. In an experiment, we compare the proposed method and 
the conventional methods in terms of quantity, quality, fusing speed, and flickering artifacts. 
The proposed method synthesizes 57.93 frames per second for an image size of 320 × 270. 
Based on our experiments, we confirmed that the proposed method is able to perform real-time 
processing. In addition, the proposed method synthesizes flicker-free video. 
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1. Introduction 

Image fusion is the process of synthesizing two or more images into one image. It assists 
human perceptibility because it incorporates complementary information of images. 
Visible-infrared image fusion is a typical task of image fusion. The infrared image is able to 
capture the thermal characteristics of an object. This type of image is useful at night or in 
foggy environments but typically results in blurry images. By contrast, the visible image 
shows sharp details under normal lighting conditions. Thus, it can assist in the identification of 
the details of an object and its background. However, it is often impossible to identify a target 
at night or in foggy environments.  

Combining these two complementary images is advantageous for identifying objects under 
different lighting conditions. This not only assists human perceptibility but is also useful for 
application to higher order algorithms involving object tracking and object recognition. In 
particular, in surveillance systems, the infrared image is advantageous for identifying the 
position of the target, and the visible image is useful for exploring the details of the 
surrounding environment. Therefore, visible-infrared image fusion has important applications 
that include surveillance systems. 
 

 
Fig. 1. Proposed image fusing process 

 
There have been numerous investigations on visible-infrared image fusion. Conventional 

methods have shown superior results in terms of the sharpness of the target and the details of 
the surrounding environment. However, since a complicated algorithm is used, these 
approaches are time intensive. This problem is a disadvantage especially in real-time 
monitoring, which is an important function of modern surveillance systems. 

In this paper, we propose a real-time visible-infrared image fusion method. For this purpose, 
we propose a multi-guided filter. The multi-guided filter is a modification of the well-known 
guided filter. First, we analyzed the problems associated with the use of a guided filter for 
image fusion. We discovered significant drawbacks of this filter and subsequently modified it 
to produce multi-guided filters. The guided filter is characterized by the gradient of the 
guidance image. This characterization is not suitable to visible-infrared image fusion in which 
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the information in both images is important. Therefore, we proposed the multi-guided filter 
based on two or more images as the guidance images. The multi-guided filter effectively 
synthesizes two images. At the same time, the proposed method exhibited a fast fusing speed. 

Through experiments, we verified that the proposed method quickly synthesizes images. At 
the same time, we showed quantitative and qualitative performances comparable to the 
conventional methods. In addition, we confirmed that there are no flickering artifacts, which 
often occur in consecutive image processing. The proposed method synthesizes images with a 
size of 320×270 at a speed of 58 fps. This is fast enough for real-time processing. The 
contributions of this paper are as follows: 

 We analyze the reasons why the guided filter is not suitable for image fusion. 

 We propose a multi-guided filter. The multi-guided filter is a modified algorithm of 
the guided filter for multiple guidance images. 

 We propose a real-time image fusion method using the multi-guided filter. The 
proposed image fusing method is faster than conventional methods. 

 We compare the conventional methods and the proposed image fusion method in 
terms of quantitative, qualitative, fusing speed, and flickering artifacts.  

The structure of the paper is as follows. In Chapter 2, we review studies related to 
visible-infrared image fusion. Chapter 3 briefly reviews the guided filter. Chapter 4 analyzes 
the problem of image fusion using the guided filter. In Section 5, we derive the multi-guided 
filter from the guided filter. In Chapter 6, we compare the proposed method with other 
methods through experimentation. Chapter 7 is the conclusion. 

2. Related Work 
In this chapter, we briefly review previous visible-infrared image fusion methods. 

2.1 Image Decomposing and Recomposing based Image Fusion 
Image decomposing and recomposing based image fusion methods are mainstream 

approaches for visible-infrared image fusion. These methods decompose visible-infrared 
images and reconstruct a new image according to the rules for fusion. Pyramid-based methods 
[1][2][3], wavelet-based methods [4][5][6], curvelet transform-based methods [7], 
multi-resolution singular value decomposition-based method [8], bilateral filter-based method 
[9], guided filtering-based methods [10][11][12], sparse representation-based methods [13], 
fourth order partial differential based method [14], and visual saliency based method [15][16] 
have been studied. Image decomposing and recomposing based fusion methods have shown 
superior results in terms of the quality of the fused image. However, these methods can be 
quite complex when high-quality results are needed. Therefore, they are usually not suitable 
for real-time processing. 

2.2 Iterative Optimization based Image Fusion 
Ma et al. [17] proposed an image fusion method using iterative optimization. The objective 

of their method is to transfer the details of the visible image into the infrared image. The 
method used by Ma et al. successfully synthesizes the visible-infrared image. However, it 
requires a long computational period because it is an iterative optimization-based method, 
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which is an inherently time-intensive algorithm. This method is suitable for military purposes, 
where speed is an issue. 

2.3 Deep Neural Network based Image Fusion 
Recently, deep neural network techniques have demonstrated superior results in various 

fields. Thus, deep neural network based image fusion methods have been proposed. Liu et al. 
[18] use a convolutional neural network to construct a focus map and synthesize images of 
well-focused regions. The main objective in this case was to synthesize differently focused 
images. But, their method was also useful for visible-infrared image fusion, medical image 
fusion, and multiple exposure image fusion. In spite of these results, this method is unsuitable 
for real-time image fusion. When a GPU was used, their method processed a 520 × 520 image 
in 0.33 s.  

Xu et al. [19] also used deep neural networks for multi focused image fusion. The method of 
Xu et al. demonstrated better results than other conventional methods. However, this method 
is also a time-consuming algorithm. Ma et al. [20] proposed a generative adversarial network 
based image fusion method named FusionGAN. Their method finds the optimal fused image 
that keeps thermal radiation and textural details in the source without a manually tuned fusion 
rule. The method of Ma et al. demonstrated superior fusion performance but is not suitable for 
real-time processing owing to its speed. 

2.4 Guided Filter based Image Fusion 
The guided filter is an edge preserving-smoothing filter [21]. This filter is used in a wide 

variety of applications such as soft matting, image enhancement, and multi-exposure image 
combination. The guided filter inherits the conventional bilateral filter [22][23] and the joint 
bilateral filter [24] but is faster than conventional filters. The guided filter is fast because it is 
based on a simple one-pass algorithm. Gan et al. [11] used the guided filter to fuse images in a 
stage of weight refinement. The guided filter was also used for visible-infrared image fusion in 
a previous investigation by Li et al. [10]. Li et al. used the guided filter as a sub process of the 
image decomposing and recomposing processes. 

A gradient domain guided filter was proposed for improving the edge-preserving ability via 
exploiting constraints [25]. Zhu et al. [12] proposed an image fusion method using the gradient 
domain guided filter and the image decomposing and recomposing. Their method 
demonstrated superior performance in both visual perceptibility and quantity. However, the 
method of Zhe et al. also used the guided filter as a sub process of the image decomposing and 
recomposing. 

In the conventional image fusion methods, the guided filter was a sub stage and a sub 
process. Thus the conventional guided filter based methods shared common characteristics. 
They are complicated algorithms and have tunable parameters by hands.  

2.5 Fused Image Evaluation Metric 
In order to measure the fused image, various metrics have been introduced. Mutual 

information (MI) [26] and normalized mutual information (NMI) [27] represent the average of 
the mutual information between images. Mutual information is the entropy of information that 
is mutually shared between two data. We evaluate how much the fused image expresses the 
mutual information of the source image by using the average mutual information. The 
gradient-based metric Qg (also known as Qabf) [28] is also used. Qg measures the similarity of 
the magnitude and orientation of two image gradients.  
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3. Guided Filter Review 
In this chapter, we briefly review the guided filter. The guided filter is an edge 

preserving-smoothing algorithm proposed by He et al. [21]. The guided filter replaces 
conventional filters such as the bilateral filter [22][23] and the joint-bilateral filter [24], and it 
has a faster computation speed. In addition, the guided filter can be utilized for soft matting, 
image enhancement, and so on. The guided filter fuses the intensity of the input image with the 
gradient of the guidance image. Equations (1), (2), and (3) are the key operations of the guided 
filter. 

 

𝑎𝑎𝑛𝑛 =
𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼𝑘𝑘,𝑝𝑝𝑘𝑘)
𝑐𝑐𝑎𝑎𝑣𝑣(𝐼𝐼𝑘𝑘) + 𝜀𝜀

 (1) 

 
𝑏𝑏𝑛𝑛 = �̅�𝑝𝑛𝑛 − 𝑎𝑎𝑛𝑛𝐼𝐼�̅�𝑛 (2) 

 
𝑞𝑞𝑛𝑛 = 𝑎𝑎�𝑛𝑛𝐼𝐼𝑛𝑛 + 𝑏𝑏�𝑛𝑛 (3) 

 
where 𝑞𝑞 denotes a fused image, 𝑝𝑝 denotes an input image, 𝐼𝐼 denotes a guidance image, 𝑛𝑛 
denotes a pixel, and 𝑘𝑘 denotes a corresponding window. (∙)��� is the local average of a window, 
𝑐𝑐𝑐𝑐𝑐𝑐(∙) represents the covariance, and 𝑐𝑐𝑎𝑎𝑣𝑣(∙) represents the variance. 𝜀𝜀 is a user parameter. In 
general, a very small value is used for 𝜀𝜀. Equations (1) and (2) calculate 𝑎𝑎 and 𝑏𝑏, and (3) 
defines how to obtain fused pixels. In other words, the guided filter sequentially calculates 𝑎𝑎𝑛𝑛, 
𝑏𝑏𝑛𝑛, and 𝑞𝑞𝑛𝑛 for each sliding window in the input image 𝑝𝑝 and the guidance image 𝐼𝐼. 

Mathematically, it is not easy to explain the guided filter. Therefore, we will attempt to do 
so intuitively. If the window of the guided filter is in a flat region, the window has a very small 
variance, and result 𝑞𝑞𝑛𝑛 is the local average of the input image. Equations (4), (5), and (6) 
represent the case where the window of the guidance image is flat. If 𝐼𝐼 is flat, i.e., 𝑐𝑐𝑎𝑎𝑣𝑣(𝐼𝐼𝑘𝑘) ≪
𝜀𝜀 and 𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼𝑘𝑘 ,𝑝𝑝𝑘𝑘) ≪ 𝜀𝜀, 𝑎𝑎 is equal to or similar to 0, 𝑏𝑏 is equal to or similar to the local average 
of 𝑝𝑝𝑛𝑛, and the fused pixel 𝑞𝑞𝑛𝑛 is equal to or similar to the local average of 𝑝𝑝𝑛𝑛. As a result, the 
guided filter facilitates smoothing if the window is in a flat region. 
 

 𝑎𝑎𝑛𝑛 ≅
0
𝜀𝜀

= 0  (4) 

 
𝑏𝑏𝑛𝑛 ≅ �̅�𝑝𝑛𝑛 (5) 

 
𝑞𝑞𝑛𝑛 = 𝑎𝑎�𝑛𝑛𝐼𝐼𝑛𝑛 + 𝑏𝑏�𝑛𝑛 ≈ �̿�𝑝𝑛𝑛 (6) 

 
Conversely, when the window is in an edge region, it has a very large variance value, and 

the resulting pixel represents the gradient of the guidance image. Therefore, the guided filter 
maintains the edge of the guidance image. Equations (7) and (8) explain the case where the 
window is on the edge. If 𝑐𝑐𝑎𝑎𝑣𝑣(𝐼𝐼𝑘𝑘) ≫ 𝜀𝜀 and 𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼𝑘𝑘,𝑝𝑝𝑘𝑘) ≫ 𝜀𝜀, then 𝑎𝑎𝑛𝑛 is almost 1. As a result, 
the gradient of the resulting pixel becomes similar to the gradient of the guide image. 
 

 
 ∇𝑞𝑞𝑛𝑛 = 𝑎𝑎�∇𝐼𝐼𝑛𝑛 ≈ ∇𝐼𝐼𝑛𝑛 (8) 

 

𝑎𝑎𝑛𝑛 ≈ 1 (7) 
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 4. Use and Analysis of Guided Filter in Image Fusion 
The guided filter transfers the gradient of the guidance image to the input image. Therefore, 

we expected that it would be applicable to image fusion. However, we observed critical 
defects when the guided filter was used for image fusion. Fig. 2 shows the result of fusing 
images using the guided filter. We expected that the result of the guided filter would be similar 
to (d), but the guided filter did not work as expected. (c) is the result of the guided filter. It 
appears blurry, and the detail of the front wheel is not properly represented. This is because the 
wheel of the guidance image is dark and there are few gradients.  

In addition, parked cars are blurred in (c). The edge of the parked cars is almost black in the 
infrared image and is not represented in result (c). Conversely, the moving car at the center of 
(b) is dark, and there is less edge. As a result, the complementary information of the two 
images is not represented in (c). On the other hand, the result of the proposed method (d) 
represents both the details of the infrared image and those of the visible image. The proposed 
method is explained in Chapter 5. 
 

  
(a) Infrared image (b) Visible image 

  
(c) Fused result of guided filtering,  

input: (a), guidance: (b) 
(d) Fused result of multi-guided filtering,  

input: (a), guidance: (a) and (b) 
Fig. 2. Fused results of guided filtering and multi-guided filtering 1 

 
We observed another problem in the guided filter related to texture transferrence. Fig. 3 

shows this problem. (c) has a detailed outline of a person. However, the texture of the bushes is 
not represented. This is because the guided filter determined that the texture is a noise to 
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remove it. This smoothing characteristic is a disadvantage for image fusion. On the other hand, 
in (d), the proposed method transfers the texture. The texture transfer of the proposed method 
is explained in Chapter 5.  

 

  
(a) Infrared image (b) Visible image 

  
(c) Fused result of guided filtering,  

input: (a), guidance: (b) 
(d) Fused result of multi-guided filtering,  

input: (a), guidance: (a) and (b) 
Fig. 3. Fused results of guided filtering and multi-guided filtering 2 

 5. Multi-Guided Filter 
The proposed multi-guided filter is a modification of the guided filter. In this chapter, we 

analyze the guided filter and describe a process of converting it to the multi-guided filter. 
Equation (3) is the key formula that describes the guided filter. In order to extend the 

multi-guided filter, we separate (3) into two components: a term related to the guidance image 
and the other terms. Equation (9) outlines the derivation process. 

 
𝑞𝑞𝑛𝑛 = 𝑎𝑎�𝑛𝑛𝐼𝐼𝑛𝑛 + (�̅�𝑝𝑛𝑛 − 𝑎𝑎𝑛𝑛𝐼𝐼�̅�𝑛)��������������� 
   ≈ 𝑎𝑎�𝑛𝑛𝐼𝐼𝑛𝑛 + �̿�𝑝𝑛𝑛 − (𝑎𝑎𝑛𝑛𝐼𝐼�̅�𝑛)�������� 

     = �̿�𝑝𝑛𝑛 + �𝑎𝑎�𝑛𝑛𝐼𝐼𝑛𝑛 − (𝑎𝑎𝑛𝑛𝐼𝐼�̅�𝑛)��������� 
(9) 
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Strictly, (�̅�𝑝𝑛𝑛 − 𝑎𝑎𝑛𝑛𝐼𝐼�̅�𝑛)��������������� in (9) is not �̿�𝑝𝑛𝑛 − (𝑎𝑎𝑛𝑛𝐼𝐼�̅�𝑛)��������. However, this does not present any practical 
issues during experiments. In (9), the first term �̿�𝑝𝑛𝑛  is not related to the guidance image, 
whereas the second term �𝑎𝑎�𝑛𝑛𝐼𝐼𝑛𝑛 − (𝑎𝑎𝑛𝑛𝐼𝐼�̅�𝑛)��������� relates to the guidance image. Next, we convert the 
guidance image term to the multi-guidance images term. 

  
 𝑞𝑞𝑛𝑛 = �̿�𝑝𝑛𝑛 + �𝑤𝑤(𝑚𝑚) �𝑎𝑎(𝑚𝑚)������

𝑛𝑛𝐼𝐼(𝑚𝑚)
𝑛𝑛 − �𝑎𝑎(𝑚𝑚)

𝑛𝑛𝐼𝐼(𝑚𝑚)�����
𝑛𝑛�

������������������
𝑚𝑚

 (10) 

 
Here, 𝑚𝑚 represents the 𝑚𝑚-th guidance image. 𝑤𝑤(𝑚𝑚)  is the weight of the guidance image, 
which is a user parameter, and we set it to 1.0 during our experiments.  

In order to fuse the images, we modify the guided filter into the multi-guided filter based on 
(10). However, we identified a problem where texture is not represented in the fused image. 
Fig. 3 highlights this problem. The guidance image Fig. 3 (b) has the texture of bushes, but 
this does not appear in Fig. 3 (c). It is noted that this problem is caused by the characteristics of 
the guided filter. If the input image 𝑝𝑝 is flat, 𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼𝑘𝑘 ,𝑝𝑝𝑘𝑘) in (1) is close to 0, and then the 
texture of 𝐼𝐼 is not properly represented. To solve this problem, we changed 𝑐𝑐𝑐𝑐𝑐𝑐(𝐼𝐼𝑘𝑘,𝑝𝑝𝑘𝑘) of (1) 
to 𝑐𝑐𝑎𝑎𝑣𝑣(𝐼𝐼𝑘𝑘). Equation (11) is a modification of (1). As a result, our method can represent 
textures properly. 

 

𝑎𝑎(𝑚𝑚)
𝑛𝑛 =

𝑐𝑐𝑎𝑎𝑣𝑣�𝐼𝐼(𝑚𝑚)
𝑘𝑘�

𝑐𝑐𝑎𝑎𝑣𝑣(𝐼𝐼(𝑚𝑚)
𝑘𝑘) + 𝜀𝜀

 (11) 

 
Finally, the proposed method synthesizes two or more images using the multi-guided 

filtering of (10) and (11). This filter is a variation of the guided filter, which is a fast algorithm. 
Therefore, it is suitable for real-time processing. Fig. 1 shows the process of image fusion 
using the multi-guided filter. Since the conventional guided filter uses only one guidance 
image, the information of the visible or infrared image can be lost. However, the proposed 
multi-guided filter can use two guidance images. Therefore, it is possible to utilize all 
information of the visible-infrared images. In addition, it has a fast processing speed similar to 
the guided filter. In Chapter 6, we verify that the proposed method is suitable for real-time 
image fusion by comparing computation times with the other methods. 
 

 6. Experimental Results 

6.1 Experimental Setting 
In this chapter, we compare the proposed method with conventional methods in terms of 

quality, quantity, fusing speed, and flickering artifacts. The conventional methods include 
MST-SR [13], H-MSD [9], GTF [17], GFF [11], and CNNF [18]. We used dataset from [29], 
[30], and [31]. The quantitative matrices are the normalized mutual information (NMI) [27] 
and the gradient-based metric Qg [28]. We used MATLAB code provided by the authors. The 
fusing speed was measured using an Intel i5-6600 3.3 GHz CPU. In this experiment, we set the 
parameters of the proposed method as follows: weight of visible = 1.0, weight of infrared = 1.0, 
window size = 5, and 𝜀𝜀 = 0.0012 . 
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6.2 Qualitative Evaluation 

We compare the proposed method with the conventional methods. Fig. 4, 5, and 6 show the 
fused results of the visible and infrared images.  

Fig. 4 shows a moving car and parked cars. In (b), the front wheel of the car is bright at the 
center. This indicates that the wheel is hot. This is evidence that the car is moving or recently 
moved. Thus, the fused image must represent the thermal properties of the wheel. (c) MST-SR, 
(d) H-MSD, and (f) GFF fail to represent the thermal information of the wheel. (g) CNNF 
renders an incorrect backline on the center of the car. This is a critical defect. (e) GTF correctly 
represents the thermal properties but fails to represent the detail of the front wheel. However, 
the proposed method represents this information correctly and has superior detail.  

 

    
(a) Visible (b) Infrared (c) MST-SR (d) H-MSD 

    
(e) GTF (f) GFF (g) CNNF (h) Proposed 

 
Fig. 4. Fused result 1 

 
In Fig. 5, we highlight important points with red circles. With the visible image only, we 

cannot determine that are thermal sources. Thus, it is important to highlight these regions in 
Fig. 5. (d) H-MSD, (f) GFF, and (g) CNNF appear similar to the visible image, and these 
methods fail to identify the thermal sources. The proposed method identifies the marked points 
and the detail of the image correctly. 
 

    
(a) Visible (b) Infrared (c) MST-SR (d) H-MSD 

    
(e) GTF (f) GFF (g) CNNF (h) Proposed 

 
Fig. 5. Fused result 2 
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Fig. 6 shows a man and bushes. In (a), a man is not shown, but he does appear in (b). In this 
case, the objective of the image fusion is to show this man and the detail of the surrounding 
bush simultaneously. (g) CNNF makes a critical error, and the man is not visible. The other 
methods represent this man correctly, but the detail of the bush is degraded. The proposed 
method correctly represents the man and the background details.  

In this experiment, conventional methods often failed to represent important information. 
However, the fused image of the proposed method includes important information and details 
without creating critical artifacts.  
 

    
(a) Visible (b) Infrared (c) MST-SR (d) H-MSD 

    
(e) GTF (f) GFF  (g) CNNF (h) Proposed 

 
Fig. 6. Fused result 3 

 

6.3 Running Time Evaluation 
The biggest advantage of the proposed method is its running speed. Table 1 lists the 

running times and speeds of the other methods. The input image sizes were 320×270, 640×480, 
1280×720, and 520 × 520.  

In this experiment, we added another neural network based method named FusionGAN 
(F-GAN) [20]. F-GAN is a state-the-of-art method that uses a generative adversarial neural 
network for visible and infrared image fusion. We implemented F-GAN according to [20]. 

We measured the speed using MATLAB code provided by the authors of MST-SR, H-MSD, 
GTF, GFF, and CNNF (CPU). CNNF (GPU) results were referred from [18]. F-GAN was 
measured using our implementation with TensorFlow and GTX 1080ti. The proposed method 
was written in MATLAB. 

Table 1 shows the averages of the image fusing speeds. We measured only the computation 
time excluding the I/O time. The fusing speed of the proposed method for the 320 × 270 size 
image is 57.9 fps. This is faster than 30 fps, and thus the proposed image fusion method can be 
utilized for real-time processing. The second fastest algorithm was F-GAN, which has a rate of 
50.07 fps. However, this method has a much slower speed without GPU at a rate of 0.2 fps. 
The third fastest algorithm was GFF, which is 3.4 times slower than the proposed method and 
is not suitable for real-time processing. 
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Table 1. Running speed evaluation 

 Size MST-SR H-MSD GTF GFF CNNF 
(CPU) 

CNNF 
(GPU) 

F-GAN 
(CPU) 

F-GAN 
(GPU) Proposed 

Average 
running 

speed 
(FPS) 

320 × 270 5.27 2.05 0.66 17.10 0.03 - 0.20 50.07 57.93 

640 × 480 1.27 0.70 0.08 3.48 0.01 - 0.06 10.04 17.51 

1280 × 720 0.40 0.24 0.02 1.16 < 0.01 - 0.02 4.03 7.07 

520 × 520 1.48 0.81 0.12 4.21 0.01 3.03 0.06 13.97 21.38 
 

The reason for the notable difference in speed between the conventional methods and the 
proposed method is that the proposed method uses a simple algorithm. MST-SR and H-MSD 
are methods to decompose images and recompose them based on specific rules. Therefore, it 
takes a significant amount of time to decompose into multiple images and to reconstruct them. 
GTF uses iterative optimization techniques. GFF also uses the guided filter, but it involves 
decomposing and recomposing images. CNNF is a deep artificial neural network based 
method, which requires a significant amount of time.  

For the 640×480 and 1280×720 images, the proposed method is the fastest fusing method. 
In order to compare this with the GPU performance of CNNF, a 520×520 size image was also 
tested. The GPU performance of CNNF was obtained from [18]. The proposed method had a 
rate of 21.38 fps, which is faster than that of the CNNF using GPU. F-GAN demonstrated 
50.06 fps at 320×270 using GPU. Thus, F-GAN is suitable for real-time processing with GPU. 
However, it can process at 0.2 fps without GPU, which is not sufficient for real-time 
processing. 

The proposed method is much faster at a frame rate over 30 fps. This is because the 
multi-guided filter is a modification of the guided filter, which is a fast algorithm. F-GAN is 
suitable for real-time processing, but without GPU, F-GAN is slower than conventional 
methods. By experimentation, we have shown that our method is able to perform real-time 
image fusion. 

6.4 Quantitative Evaluation 
Table 2 shows the average quantitative results for three sequences: duine, nato, and tree. 
 

Table 2. Quantitative evaluation of test sequences 

 MST-SR H-MSD GTF GFF CNNF Proposed 

NMI 1.01 1.03 1.04 1.22 1.21 1.06 
𝐐𝐐𝐠𝐠 0.51 0.45 0.38 0.56 0.55 0.43 

 
In the case of quantitative evaluation, GFF and CNNF show superior results. MST-SR, 

H-MSD, GTF, and the proposed method show similar performances. However, the 
quantitative evaluation is not important for surveillance systems. CNNF’s quantitative 
performance is good, but CNNF introduces a critical artifact in the previous qualitative 
evaluation. The proposed method is not superior with regard to quantitative evaluation, but 
considering the qualitative evaluation, it yields competitive results for surveillance systems. In 
particular, the proposed method is sufficiently useful in terms of its high speed. 
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6.5 Flickering Artifact 
Typically, surveillance systems require consecutive image processing for real-time 

monitoring. Flickering artifacts often appear during consecutive image processing. Fig. 7 
shows the consecutive image fusion result of CNNF and the proposed method. Fig. 7 (a) 
shows a flickering artifact. In the region marked with a red rectangle, it is bright at frame # 21, 
but is suddenly darker at frame # 22. The rightmost figure is an overlapped image of frames # 
22 and # 23. At the marked region, CNNF has a noticeable brightness change. This artifact 
causes flickering in the real-time monitoring system. By contrast, the proposed method did not 
generate flickering artifacts.  
 

(a) C
N

N
F 

   

(b) Proposed 

   
 Frame # 21 Frame # 22 Frame # 22 and # 23 

 
Fig. 7. Example of flickering artifact 

 
 

In order to measure the flickering artifacts, we measure the luminance change using (12): 
 

Flickering Score =
1
𝑀𝑀𝑀𝑀

� �
�𝑙𝑙𝑚𝑚,𝑛𝑛

(𝑡𝑡) − 𝑙𝑙𝑚𝑚,𝑛𝑛
(𝑡𝑡+1)�

𝑚𝑚𝑚𝑚𝑛𝑛 (𝑙𝑙𝑚𝑚,𝑛𝑛
(𝑡𝑡) , 𝑙𝑙𝑚𝑚,𝑛𝑛

(𝑡𝑡+1))

𝑁𝑁

𝑛𝑛=0

𝑀𝑀

𝑚𝑚=0

 (12) 

 
where 𝑚𝑚,𝑛𝑛 is a block and a pixel, 𝑡𝑡 is the frame number, and 𝑙𝑙 represents the luminance. At 
each block, we measure the ratio of the luminance changes and compute the average. We use 
the non-overlapped 64 × 64 size block. The flickering score is higher if the consecutive images 
exhibit flickering. Fig. 8 shows the flickering scores of three sequences. In Fig. 8, the 
proposed method achieves low flickering scores for all three sequences. In (a), the other 
methods except MST-SR show low flickering scores. In frame # 9 of (b), every method shows 
high scores because the luminance of the source frame was changed, but frame # 23 does not. 
In (b), it is noted that the proposed method has the lowest flickering score at frame # 23. The 
other methods exhibited flickering. In (c), the proposed method shows a low flickering score. 
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(a) Duine 

 
(b) Nato 

 
(c) Tree 

 
Fig. 8. Graph of flickering score 

7. Conclusion 
Image fusion is a process of synthesizing two or more images into one image. The image 

fusion of visible-infrared images is especially useful because the visible and infrared images 
contain complementary information. Many methods have been proposed for visible-infrared 
image fusion with good success. However, conventional methods are not suitable for real-time 
processing because of the complexity of the implemented algorithms. To address the speed 
problem, we proposed a multi-guided filter and a real-time image fusion method based on this 
filter.  

The proposed method combines visible-infrared images without critical artifacts in terms of 
image quality and flickering. In particular, the proposed method demonstrated a fast fusing 
speed of 57.93 fps, which is sufficient for real-time image processing. The proposed method 
has room for further improvement such as automated parameter tuning. Further research will 
include an adaptive algorithm and deep neural networked based algorithm. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019                                        3105 

References 
[1]  P. Burt and E. Adelson, “The Laplacian Pyramid as a Compact Image Code,” IEEE Transactions 

on Communications, vol. 31, no. 4, pp. 532-540, 1983. Article (CrossRef Link).  
[2]  A. Toet, L. J. van Ruyven, and J. M. Valeton, “Merging Thermal And Visual Images By A 

Contrast Pyramid,” Optical Engineering, vol. 28, no. 7, 1989. Article (CrossRef Link). 
[3]  A. Toet, “Image Fusion by a Ratio of Low-Pass Pyramid,” Pattern Recognition Letters, vol. 9, no. 

4, pp. 245-253, 1989. Article (CrossRef Link). 
 [4]  H. Li, B. S. Manjunath, and S. K. Mitra, “Multisensor Image Fusion Using the Wavelet 

Transform,” Graphical Models and Image Processing, vol. 57, no. 3, pp. 235-245, 1995.  
Article (CrossRef Link). 

[5] J. J. Lewis, R. J. O’Callaghan, S. G. Nikolov, D. R. Bull, and N. Canagarajah, “Pixel-and 
region-based image fusion with complex wavelets,” Information Fusion, vol. 8, no. 2, pp. 119-130, 
2007. Article (CrossRef Link). 

[6] B. Jin, Z. Jing, and H. Pan, “Multi-modality image fusion via generalized resize-wavelet 
transformation,” KSII Transactions on Internet and Information Systems, vol. 8, no. 11, pp. 
4118-4136, 2014. Article (CrossRef Link). 

[7] F. Nencini, A. Garzelli, S. Baronti, and L. Alparone, “Remote Sensing Image Fusion using the 
Curvelet Transform,” Information Fusion, vol. 8, no. 2, pp. 143-156, 2007.  
Article (CrossRef Link). 

[8] V.P.S. Naidu, “Image fusion technique using multi-resolution singular value decomposition,” 
Defence Science Journal, vol. 61, no. 5, pp. 479-484, 2011. Article (CrossRef Link). 

[9] Z. Zhou, B. Wang, S. Li, and M. Dong, “Perceptual Fusion of Infrared and Visible Images through 
a Hybrid Multi-Scale Decomposition with Gaussian and Bilateral Filters,” Information Fusion, vol. 
30, pp. 15-26, 2016. Article (CrossRef Link). 

[10] S. Li, X. Kang, and J. Hu, “Image Fusion With Guided Filtering,” IEEE Transactions on Image 
Processing, vol. 22, no. 7, pp. 2864-2875, 2013. Article (CrossRef Link). 

[11] W. Gan, X. Wu, W. Wu, X. Yang, C. Ren, X. He, and K. Liu, “Infrared and Visible Image Fusion 
with the Use of Multi-Scale Edge-Preserving Decomposition and Guided Image Filter,” Infrared 
Physics and Technology, vol. 72, pp. 37-51, 2015. Article (CrossRef Link). 

[12] J. Zhu, W. Jin, L. Li, Z. Han, and X. Wang, “Multiscale infrared and visible image fusion using 
gradient domain guided image filtering,” Infrared Physics & Technology, vol. 89, pp. 8-19, 2017. 
Article (CrossRef Link). 

[13] Y. Liu, S. Liu, and Z. Wang, “A General Framework for Image Fusion based on Multi-Scale 
Transform and Sparse Representation,” Information Fusion, vol. 24, pp. 147-164, 2015.  
Article (CrossRef Link). 

[14] D. P. Bavirisetti, G. Xiao, and G. Liu, “Multi-sensor image fusion based on fourth order partial 
differential equations,” in Proc. of International Conference on Information Fusion, 2017.  
Article (CrossRef Link). 

[15] J. Ma, Z. Zhou, B. Wang, and H. Zong, “Infrared and visible image fusion based on visual saliency 
map and weighted least square optimization,” Infrared Physics & Technology, vol. 82, pp. 8-17, 
2017. Article (CrossRef Link). 

[16] X. Zhang, Y. Ma, F. Fan, Y. Zhang, and J. Huang “Infrared and visible image fusion via saliency 
analysis and local edge-preserving multi-scale decomposition,” Journal of the Optical Society of 
America A, vol. 34, no. 8, pp. 1400-1410, 2017.  Article (CrossRef Link). 

[17] J. Ma, C. Chen, C. Li, and J. Huang, “Infrared and visible image fusion via gradient transfer and 
total variation minimization,” Information Fusion, vol. 31, pp. 100-109, 2016.  
Article (CrossRef Link). 

[18] Y. Liu, X. Chen, H. Peng, and Z. Wang, “Multi-focus image fusion with a deep convolutional 
neural network,” Information Fusion, vol. 36, pp. 191-207, 2017. Article (CrossRef Link). 

[19] K. Xu, Z. Qin, G. Wang, H. Zhang, K. Huang, and S. Ye, “Multi-focus Image Fusion using Fully 
Convolutional Two-stream Network for Visual Sensors,” KSII Transactions on Internet and 
Information Systems, vol. 12, no. 5, pp. 2253-2272, 2018. Article (CrossRef Link).  

https://doi.org/10.1109/TCOM.1983.1095851
https://doi.org/10.1117/12.7977034
https://doi.org/10.1016/0167-8655(89)90003-2
https://doi.org/10.1006/gmip.1995.1022
https://doi.org/10.1016/j.inffus.2005.09.006
http://dx.doi.org/10.3837/tiis.2014.11.026
https://doi.org/10.1016/j.inffus.2006.02.001
http://nal-ir.nal.res.in/id/eprint/11320
https://doi.org/10.1016/j.inffus.2015.11.003
https://doi.org/10.1109/TIP.2013.2244222
https://doi.org/10.1016/j.infrared.2015.07.003
https://doi.org/10.1016/j.infrared.2017.12.003
https://doi.org/10.1016/j.inffus.2014.09.004
https://doi.org/10.23919/ICIF.2017.8009719
https://doi.org/10.1016/j.infrared.2017.02.005
https://doi.org/10.1364/JOSAA.34.001400
https://doi.org/10.1016/j.inffus.2016.02.001
https://doi.org/10.1016/j.inffus.2016.12.001
https://dx.doi.org/10.3837/tiis.2018.05.019


3106                                                            Jeong et al.: Real-Time Visible-Infrared Image Fusion using Multi-Guided Filter 

[20] J. Ma, W. Yu, P. Liang, C. Li, and J. Jiang, “FusionGAN: A generative adversarial network for 
infrared and visible image fusion,” Information Fusion, vol. 48, pp. 11-26, 2019. 
Article (CrossRef Link). 

[21] K. He, J. Sun, and X. Tang, “Guided Image Filtering,” IEEE Transactions on Pattern Analysis and 
Machine Intelligence, vol. 35, no. 6, pp. 1397-1409, 2013. Article (CrossRef Link). 

[22] C. Tomasi and R. Manduchi, “Bilateral filtering for gray and color images,” in Proc. of Sixth 
International Conference on Computer Vision, pp. 839-846, 1998. Article (CrossRef Link). 

[23] F. Banterle, M. Corsini, P. Cignoni, and R. Scopigno, “A Low-Memory, Straightforward and Fast 
Bilateral Filter Through Subsampling in Spatial Domain,” in Proc. of Computer Graphics Forum, 
vol. 31, no. 1, pp. 19-32, 2012. Article (CrossRef Link). 

[24] G. Petschnigg, R. Szeliski, M. Agrawala, M. Cohen, H. Hoppe, and K. Toyama, “Digital 
photography with flash and no-flash image pairs,” ACM Transactions on Graphics (TOG), vol. 23, 
no. 3, pp. 664-672, 2004. Article (CrossRef Link). 

[25] F. Kou, W. Chen, C. Wen, and Z. Li “Gradient Domain Guided Image Filtering,” IEEE 
Transactions on Image Processing, vol. 24, no. 11, pp. 4528-4539, 2015. 

[26] G. Qu, D. Zhang, and P. Yan, “Information measure for performance of image fusion,” Electronics 
Letters, vol. 38, no. 7, pp. 313-315, 2002. Article (CrossRef Link). 

[27] N. Cvejic, C. N. Canagarajah, and D. R. Bull, “Image fusion metric based on mutual information 
and Tsallis entropy,” Electronics Letters, vol. 42, no. 11, pp. 626-627, 2006.  
Article (CrossRef Link). 

[28] C. S. Xydeas and V. Petrovic, “Objective image fusion performance measure,” Electronics Letters, 
vol. 36, no. 4, pp. 308-309, 2000. Article (CrossRef Link). 

[29] A. Toet, J.K. Ijspeert, A.M. Waxman, and M. Aguilar, “Fusion of visible and thermal imagery 
improves situational awareness,” Displays, vol. 18, no. 2, pp. 85-95, 1997.  
Article (CrossRef Link).  

[30] J. W. Davis and V. Sharma, “Background-subtraction using contour-based fusion of thermal and 
visible imagery,” Computer Vision and Image Understanding, vol. 106, no. 2-3, pp. 162-182, 2007.
 Article (CrossRef Link). 

[31] J. J. Lewis, S. G. Nikolov, A. Loza, E. F. Canga, N. Cvejic, J. Li, A. Cardinali, C. N. Canagarajah, 
D. R. Bull, T. Riley, D. Hickman, and M. I. Smith. “The Eden Project multi-sensor data set,” 
Technical report TR-UoB-WS-Eden-Project-Data-Set, University of Bristol and Waterfall 
Solutions Ltd, 2006. 

  

https://doi.org/10.1016/j.inffus.2018.09.004
https://doi.org/10.1109/TPAMI.2012.213
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1111/j.1467-8659.2011.02078.x
https://doi.org/10.1145/1186562.1015777
https://doi.org/10.1049/el:20020212
https://doi.org/10.1049/el:20060693
https://doi.org/10.1049/el:20000267
https://doi.org/10.1016/S0141-9382(97)00014-0
https://doi.org/10.1016/j.cviu.2006.06.010


KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 13, NO. 6, June 2019                                        3107 

 

 
 

Woojin Jeong received the B.S degree in the Department of Computer Science and 
Engineering from Hanyang University, Korea, in 2012. He is currently working towards 
PhD. Degree at the Department of Computer Science and Engineering from Hanyang 
University, Korea, From 2012. His research interests include computer vision and 
machine learning.          
Email : wjjeong@visionlab.or.kr  

 
 

Bok Gyu Han received his B.S. degree in the Department of Computer Science and 
Engineering from Hallym University, Korea, in 2016. He is currently working towards 
PhD. Degree at the Department of Computer Science and Engineering from Hanyang 
University, Korea, From 2016. His research interests include computer vision and 
machine learning. 
Email : bghan@visionlab.or.kr 

 
 

Hyeon Seok Yang received his B.S. degree in the Department of Electronics and 
Information Engineering from Yeungnam University, Korea, in 2010. He received the 
M.S. degrees in the Department of Computer Science & Engineering from Hanyang 
University, Korea, in 2012. He is studying for his PhD. degree in the Department of 
Computer Science & Engineering from Hanyang University, Korea. His research interests 
include computer vision, pattern recognition, and deep learning. 
Email : hsyang@visionlab.or.kr 

 

Young Shik Moon received the B.S. and M.S. degrees in Electronics Engineering from 
Seoul National University and Korea Advanced Institute of Science and Technology, 
Korea, in 1980 and 1982, respectively, and PhD. degree in Electrical and Computer 
Engineering from the University of California at Irvine, CA, in 1990. From 1982 to 1985, 
he had been a researcher at the Electronics and Telecommunication Research Institute, 
Daejon, Korea.  In 1992, he joined the Department of Computer Science and Engineering 
at Hanyang University, Korea, as an Assistant Professor, and is currently a Professor. Dr. 
Moon served as General Chair of 2014 IEEE International Symposium on Consumer 
Electronics, and worked as the President of the Institute of Electronics and Information 
Engineer, Korea. 
Email : ysmoon@hanyang.ac.kr 

 
 


