In this paper, a foggy-degraded image restoration technique with a physics-based degradation model is proposed for the measurement system. When the degradation model is used for the image restoration, its parameters and a distance from the spreader to the camera have to be previously known. In the proposed image restoration technique, the parameters are estimated from variances and averages of intensities on two foggy-degraded landmark images taken at different distances. Foggy-degraded images can be restored with the estimated parameters and the distance measured by the measurement system. On the basis of the experimental results, the performance of the proposed foggy-degraded image restoration technique was verified.
본 논문은 도로 영상에서 안개의 존재 여부를 판단하여 미디언 필터를 기반으로 하는 Retinex 알고리즘을 적용하고 영상을 개선한 후 최종적으로 차선을 검출하는 알고리즘을 제안한다. 영상 내에서 특정 관심 영역을 지정하고 해당 영역에서의 히스토그램을 분석하여 안개의 존재 여부를 판단한다. 안개 낀 영상으로 판단되는 경우 영상의 화질개선을 위해 미디언 필터를 기반으로 하는 Retinex 알고리즘을 이용해 대비도를 향상시킨다. 기존의 Retinex 알고리즘은 가우시안 필터를 적용하기 때문에 연산에 많은 시간이 걸리며, 특히 도로의 안개 영상에서는 차선의 특징이 두드러지지 않았다. 본 논문에서는 가우시안 필터를 미디언 필터를 바꿈으로써 도로의 안개 영상에 대해서 강인한 대비도 향상 효과를 얻을 수 있었다. 개선된 영상에서 차선에 대한 정보를 획득하기 위해서 이중 임계치를 이용한 이진화를 수행하고 라벨링을 통해서 검출된 차선의 크기, 방향 등의 정보를 계산하여 최종적인 차선을 검출한다. 제안한 알고리즘의 성능은 다양한 환경의 도로를 주행하면서 획득한 연속적인 영상들에 적용함으로써 제안하는 알고리즘의 효율성 및 우수성을 평가하였다.
Jeong, Woojin;Han, Bok Gyu;Yang, Hyeon Seok;Moon, Young Shik
KSII Transactions on Internet and Information Systems (TIIS)
/
제13권6호
/
pp.3092-3107
/
2019
Visible-infrared image fusion is a process of synthesizing an infrared image and a visible image into a fused image. This process synthesizes the complementary advantages of both images. The infrared image is able to capture a target object in dark or foggy environments. However, the utility of the infrared image is hindered by the blurry appearance of objects. On the other hand, the visible image clearly shows an object under normal lighting conditions, but it is not ideal in dark or foggy environments. In this paper, we propose a multi-guided filter and a real-time image fusion method. The proposed multi-guided filter is a modification of the guided filter for multiple guidance images. Using this filter, we propose a real-time image fusion method. The speed of the proposed fusion method is much faster than that of conventional image fusion methods. In an experiment, we compare the proposed method and the conventional methods in terms of quantity, quality, fusing speed, and flickering artifacts. The proposed method synthesizes 57.93 frames per second for an image size of $320{\times}270$. Based on our experiments, we confirmed that the proposed method is able to perform real-time processing. In addition, the proposed method synthesizes flicker-free video.
KSII Transactions on Internet and Information Systems (TIIS)
/
제10권9호
/
pp.4419-4441
/
2016
A cause of vehicle accidents is the reduced visibility due to bad weather conditions such as fog. Therefore, an onboard vision system should take visibility detection into account. In this paper, we propose a simple and effective approach for measuring the visibility distance using a single camera placed onboard a moving vehicle. The proposed algorithm is controlled by a few parameters and mainly includes camera parameter estimation, region of interest (ROI) estimation and visibility computation. Thanks to the ROI extraction, the position of the inflection point may be measured in practice. Thus, combined with the estimated camera parameters, the visibility distance of the input foggy image can be computed with a single camera and just the presence of road and sky in the scene. To assess the accuracy of the proposed approach, a reference target based visibility detection method is also introduced. The comparative study and quantitative evaluation show that the proposed method can obtain good visibility detection results with relatively fast speed.
본 논문에서는 자연 이미지가 갖는 통계적 일관성과 안개를 인식하는 시지각적 통계 특성을 이용하여 단일 안개 영상에서, 안개가 없는 참조 영상과의 비교 없이, 시지각적으로 안개 영상의 가시성을 예측한다. 제안하는 모델은 기존 안개 영상의 가시성 예측 방법들이 불가피하게 사용했던 추가 정보들, 예를 들면, 다수의 다양한 안개 영상, 차량 탑재 카메라의 지리적 위치 정보, 사람의 가시성 평가에 대한 학습 결과, 도로 선 혹은 교통 신호와 같이 안개 영상의 돋보이는 특정 물체 정보 등을 사용하지 않는다. 본 논문의 모델은 오직 테스트 안개 영상이 자연 현상에 의한 안개 영상 혹은 안개가 전혀 없는 영상에서 일관적으로 발견되는 통계적 특성으로부터 얼마나 떨어져 있는지 측정함으로써 안개 영상의 가시성을 예측한다. 시지각적으로 안개를 인식하여 일관된 통계를 나타내는 특징 인자들은 공간상의 자연 이미지 통계 모델과 안개 영상의 특징 (명암대비의 감소, 색상과 채도의 감소, 밝기의 증가)으로부터 유도된다. 제안하는 모델은 안개 영상의 전체 영역에 대한 가시성뿐만 아니라 각 관심 영역에서 패치 크기에 따른 지역적 안개 영상의 가시성도 예측할 수 있다. 본 모델의 성능분석을 위하여 사람이 직접 인지하는 가시성 측정 실험을 100 장의 다양한 안개 영상에 대해 수행하였다. 본 논문에서 제시한 모델을 통해 예측된 안개 영상의 가시성과 사람이 체감한 안개 영상의 가시성을 비교한 결과, 둘 사이에 매우 높은 상관관계가 있는 것으로 평가되었다. 본 논문이 제안하는 무참조 안개 영상의 가시성 예측 모델은 사람의 시지각적 특성을 활용한 새로운 방법으로, 향후 안개 영상의 가시성 향상 알고리듬 개발과 선 개발된 안개 제거 및 가시성 향상 알고리듬들의 성능을 정확히 평가할 수 있는 새로운 측정방법 개발 등에 매우 유용할 것으로 기대된다.
An image enhancement algorithm and image defogging method are studied in this paper. The formation of fog and the characteristics of fog image are analyzed, and the fog image is preprocessed by histogram equalization method; then the additive white noise is removed by foggy image attenuation model, the atmospheric scattering physical model is constructed, the image detail characteristics are enhanced by image enhancement method, and the visual effect of defogging image is enhanced by guided filtering method. The proposed method has a good defogging effect on the image. When the number of training iterations is 3,000, the peak signal-to-noise ratio of the proposed method is 43.29 dB and the image structure similarity is 0.9616, indicating excellent image defogging effect.
본 논문은 single image에서 측정한 빛 전달량 값과 local contrast 값을 사용하여 안개 량을 수치화하는 방법을 제안한다. 제안하는 방법은 빛 전달량 값을 사용하여 안개로 예측되는 지역을 추정하고, 추정된 안개 예측 지역의 넓이와 해당 지역의 local contrast 크기의 범위를 사용하여 안개 정도를 수치화 한다. single image에서 측정 가능한 안개 의 물리적 특성들을 고려하였기 때문에 기존의 안개 검출 알고리즘들이 구분하지 못했던 영상들에서도 안개 량을 정확하게 측정하였다. 실제 빛의 산란 정도를 측정하는 감광 계수 측정계를 사용하여 측정한 안개 량과 제안하는 방법의 수치를 비교했을 때, 다양한 환경과 물체를 포함한 영상들에서 95%이상의 정확도로 안개 정도를 수치화 하였다. 또한 빛 전달량 추정 과정에서 local contrast 값을 추출하여 사용하기 때문에 기존의 빛 전달량을 측정하는 방법에서 복잡도를 거의 증가시키지 않는다.
Imaging in the Short Wave Infrared (SWIR) provides several advantages over the visible and near-infrared regions: enhanced image resolution in in foggy or dusty environments, deep tissue penetration, surveillance capabilities with eye-safe lasers, assessment of food quality and safety. Commercially available SWIR imagers are fabricated by integrating expensive epitaxial grown III-V compound semiconductor sensors with Si-based readout integrated circuits(ROIC) by indium bump bonding Infrared image sensors made of solution-processed quantum dots have recently emerged as candidates for next-generation SWIR imagers. They combine ease of processing, tunable optoelectronic properties, facile integration with Si-based ROIC and good performance. Here, we review recent research and development trends of various application fields of SWIR image sensors and nano-materials capable of absorption and emission of SWIR band. With SWIR sensible nano-materials, new type of SWIR image sensor can replace current high price SWIR imagers.
To improve the effect of image restoration and solve the image detail loss, an image dehazing enhancement algorithm based on mean guided filtering is proposed. The superpixel calculation method is used to pre-segment the original foggy image to obtain different sub-regions. The Ncut algorithm is used to segment the original image, and it outputs the segmented image until there is no more region merging in the image. By means of the mean-guided filtering method, the minimum value is selected as the value of the current pixel point in the local small block of the dark image, and the dark primary color image is obtained, and its transmittance is calculated to obtain the image edge detection result. According to the prior law of dark channel, a classic image dehazing enhancement model is established, and the model is combined with a median filter with low computational complexity to denoise the image in real time and maintain the jump of the mutation area to achieve image dehazing enhancement. The experimental results show that the image dehazing and enhancement effect of the proposed algorithm has obvious advantages, can retain a large amount of image detail information, and the values of information entropy, peak signal-to-noise ratio, and structural similarity are high. The research innovatively combines a variety of methods to achieve image dehazing and improve the quality effect. Through segmentation, filtering, denoising and other operations, the image quality is effectively improved, which provides an important reference for the improvement of image processing technology.
With the recent development of computer vision technology, image processing-based mechanical devices are being developed to realize autonomous driving. The camera-taken images of image processing-based machines are invisible due to scattering and absorption of light in foggy conditions. This lowers the object recognition rate and causes malfunction. The safety of the technology is very important because the malfunction of autonomous driving leads to human casualties. In order to increase the stability of the technology, it is necessary to apply an efficient haze removal algorithm to the camera. In the conventional haze removal method, since the haze removal operation is performed regardless of the haze concentration of the input image, excessive haze is removed and the quality of the resulting image is deteriorated. In this paper, we propose an automatic haze removal method that removes haze according to the haze density of the input image by applying Ngo's Haziness Degree Evaluator (HDE) to Kim's haze removal algorithm using Hazy Particle Map. The proposed haze removal method removes the haze according to the haze concentration of the input image, thereby preventing the quality degradation of the input image that does not require haze removal and solving the problem of excessive haze removal. The superiority of the proposed haze removal method is verified through qualitative and quantitative evaluation.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.