• Title/Summary/Keyword: Fog-Cloud Computing

Search Result 60, Processing Time 0.028 seconds

Extraction of Optimal Moving Patterns of Edge Devices Using Frequencies and Weights (빈발도와 가중치를 적용한 엣지 디바이스의 최적 이동패턴 추출)

  • Lee, YonSik;Jang, MinSeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.5
    • /
    • pp.786-792
    • /
    • 2022
  • In the cloud computing environment, there has been a lot of research into the Fog/Edge Computing (FEC) paradigm for securing user proximity of application services and computation offloading to alleviate service delay difficulties. The method of predicting dynamic location change patterns of edge devices (moving objects) requesting application services is critical in this FEC environment for efficient computing resource distribution and deployment. This paper proposes an optimal moving pattern extraction algorithm in which variable weights (distance, time, congestion) are applied to selected paths in addition to a support factor threshold for frequency patterns (moving objects) of edge devices. The proposed algorithm is compared to the OPE_freq [8] algorithm, which just applies frequency, as well as the A* and Dijkstra algorithms, and it can be shown that the execution time and number of nodes accessed are reduced, and a more accurate path is extracted through experiments.

Extracting optimal moving patterns of edge devices for efficient resource placement in an FEC environment (FEC 환경에서 효율적 자원 배치를 위한 엣지 디바이스의 최적 이동패턴 추출)

  • Lee, YonSik;Nam, KwangWoo;Jang, MinSeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.1
    • /
    • pp.162-169
    • /
    • 2022
  • In a dynamically changing time-varying network environment, the optimal moving pattern of edge devices can be applied to distributing computing resources to edge cloud servers or deploying new edge servers in the FEC(Fog/Edge Computing) environment. In addition, this can be used to build an environment capable of efficient computation offloading to alleviate latency problems, which are disadvantages of cloud computing. This paper proposes an algorithm to extract the optimal moving pattern by analyzing the moving path of multiple edge devices requiring application services in an arbitrary spatio-temporal environment based on frequency. A comparative experiment with A* and Dijkstra algorithms shows that the proposed algorithm uses a relatively fast execution time and less memory, and extracts a more accurate optimal path. Furthermore, it was deduced from the comparison result with the A* algorithm that applying weights (preference, congestion, etc.) simultaneously with frequency can increase path extraction accuracy.

A Design of Cooperation Coordinator using Band-Cloud

  • Min, Seongwon;Lee, Jong-Yong;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.5 no.2
    • /
    • pp.90-97
    • /
    • 2017
  • The Internet of Things(IoT) market is expected to grow from 15.5billion to 75.4 billion by 2015-2025. As the number of IoT devices increases, the amount of data that is sent to the cloud is increasing. Today's Cloud Computing models are not suited to handle the vast amount of data generated by IoT devices. In this paper, we propose a Cooperation Coordinator System that reduces server load and improved real-time processing capability under specific circumstances by using Band-Cloud. The cooperation coordinator system dynamically forms the cloud when cooperation is needed between mobile devices located near. It is called Band-Cloud. Band-Cloud provides services entrusted by Central Cloud. This paper describes the proposed system and shows the cooperation process using the Android-based mobile devices and Wi-Fi Direct technology. Such a system can be applied to cases where real-time processing is required in a narrow area such as a hospital ward or a school classroom.

A Survey on 5G Enabled Multi-Access Edge Computing for Smart Cities: Issues and Future Prospects

  • Tufail, Ali;Namoun, Abdallah;Alrehaili, Ahmed;Ali, Arshad
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.6
    • /
    • pp.107-118
    • /
    • 2021
  • The deployment of 5G is in full swing, with a significant yearly growth in the data traffic expected to reach 26% by the year and data consumption to reach 122 EB per month by 2022 [10]. In parallel, the idea of smart cities has been implemented by various governments and private organizations. One of the main objectives of 5G deployment is to help develop and realize smart cities. 5G can support the enhanced data delivery requirements and the mass connection requirements of a smart city environment. However, for specific high-demanding applications like tactile Internet, transportation, and augmented reality, the cloud-based 5G infrastructure cannot deliver the required quality of services. We suggest using multi-access edge computing (MEC) technology for smart cities' environments to provide the necessary support. In cloud computing, the dependency on a central server for computation and storage adds extra cost in terms of higher latency. We present a few scenarios to demonstrate how the MEC, with its distributed architecture and closer proximity to the end nodes can significantly improve the quality of services by reducing the latency. This paper has surveyed the existing work in MEC for 5G and highlights various challenges and opportunities. Moreover, we propose a unique framework based on the use of MEC for 5G in a smart city environment. This framework works at multiple levels, where each level has its own defined functionalities. The proposed framework uses the MEC and introduces edge-sub levels to keep the computing infrastructure much closer to the end nodes.

Data anomaly detection and Data fusion based on Incremental Principal Component Analysis in Fog Computing

  • Yu, Xue-Yong;Guo, Xin-Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.10
    • /
    • pp.3989-4006
    • /
    • 2020
  • The intelligent agriculture monitoring is based on the perception and analysis of environmental data, which enables the monitoring of the production environment and the control of environmental regulation equipment. As the scale of the application continues to expand, a large amount of data will be generated from the perception layer and uploaded to the cloud service, which will bring challenges of insufficient bandwidth and processing capacity. A fog-based offline and real-time hybrid data analysis architecture was proposed in this paper, which combines offline and real-time analysis to enable real-time data processing on resource-constrained IoT devices. Furthermore, we propose a data process-ing algorithm based on the incremental principal component analysis, which can achieve data dimensionality reduction and update of principal components. We also introduce the concept of Squared Prediction Error (SPE) value and realize the abnormal detection of data through the combination of SPE value and data fusion algorithm. To ensure the accuracy and effectiveness of the algorithm, we design a regular-SPE hybrid model update strategy, which enables the principal component to be updated on demand when data anomalies are found. In addition, this strategy can significantly reduce resource consumption growth due to the data analysis architectures. Practical datasets-based simulations have confirmed that the proposed algorithm can perform data fusion and exception processing in real-time on resource-constrained devices; Our model update strategy can reduce the overall system resource consumption while ensuring the accuracy of the algorithm.

Cloudification of On-Chip Flash Memory for Reconfigurable IoTs using Connected-Instruction Execution (연결기반 명령어 실행을 이용한 재구성 가능한 IoT를 위한 온칩 플래쉬 메모리의 클라우드화)

  • Lee, Dongkyu;Cho, Jeonghun;Park, Daejin
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.14 no.2
    • /
    • pp.103-111
    • /
    • 2019
  • The IoT-driven large-scaled systems consist of connected things with on-chip executable embedded software. These light-weighted embedded things have limited hardware space, especially small size of on-chip flash memory. In addition, on-chip embedded software in flash memory is not easy to update in runtime to equip with latest services in IoT-driven applications. It is becoming important to develop light-weighted IoT devices with various software in the limited on-chip flash memory. The remote instruction execution in cloud via IoT connectivity enables to provide high performance software execution with unlimited software instruction in cloud and low-power streaming of instruction execution in IoT edge devices. In this paper, we propose a Cloud-IoT asymmetric structure for providing high performance instruction execution in cloud, still low power code executable thing in light-weighted IoT edge environment using remote instruction execution. We propose a simulated approach to determine efficient partitioning of software runtime in cloud and IoT edge. We evaluated the instruction cloudification using remote instruction by determining the execution time by the proposed structure. The cloud-connected instruction set simulator is newly introduced to emulate the behavior of the processor. Experimental results of the cloud-IoT connected software execution using remote instruction showed the feasibility of cloudification of on-chip code flash memory. The simulation environment for cloud-connected code execution successfully emulates architectural operations of on-chip flash memory in cloud so that the various software services in IoT can be accelerated and performed in low-power by cloudification of remote instruction execution. The execution time of the program is reduced by 50% and the memory space is reduced by 24% when the cloud-connected code execution is used.

A study on the application of blockchain to the edge computing-based Internet of Things (에지 컴퓨팅 기반의 사물인터넷에 대한 블록체인 적용 방안 연구)

  • Choi, Jung-Yul
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.219-228
    • /
    • 2019
  • Thanks to the development of information technology and the vitalization of smart services, the Internet of Things (IoT) technology, in which various smart devices are connected to the network, has been continuously developed. In the legacy IoT architecture, data processing has been centralized based on cloud computing, but there are concerns about a single point of failure, end-to-end transmission delay, and security. To solve these problems, it is necessary to apply decentralized blockchain technology to the IoT. However, it is hard for the IoT devices with limited computing power to mine blocks, which consumes a great amount of computing resources. To overcome this difficulty, this paper proposes an IoT architecture based on the edge computing technology that can apply blockchain technology to IoT devices, which lack computing resources. This paper also presents an operaional procedure of blockchain in the edge computing-based IoT architecture.

Multi-Obfuscation Approach for Preserving Privacy in Smart Transportation

  • Sami S. Albouq;Adnan Ani Sen;Nabile Almoshfi;Mohammad Bin Sedeq;Nour Bahbouth
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.139-145
    • /
    • 2023
  • These days, protecting location privacy has become essential and really challenging, especially protecting it from smart applications and services that rely on Location-Based Services (LBS). As the technology and the services that are based on it are developed, the capability and the experience of the attackers are increased. Therefore, the traditional protection ways cannot be enough and are unable to fully ensure and preserve privacy. Previously, a hybrid approach to privacy has been introduced. It used an obfuscation technique, called Double-Obfuscation Approach (DOA), to improve the privacy level. However, this approach has some weaknesses. The most important ones are the fog nodes that have been overloaded due to the number of communications. It is also unable to prevent the Tracking and Identification attacks in the Mix-Zone technique. For these reasons, this paper introduces a developed and enhanced approach, called Multi-Obfuscation Approach (MOA that mainly depends on the communication between neighboring fog nodes to overcome the drawbacks of the previous approach. As a result, this will increase the resistance to new kinds of attacks and enhance processing. Meanwhile, this approach will increase the level of the users' privacy and their locations protection. To do so, a big enough memory is needed on the users' sides, which already is available these days on their devices. The simulation and the comparison prove that the new approach (MOA) exceeds the DOA in many Standards for privacy protection approaches.

Mobile Edge Computing based Charging Infrastructure considering Electric Vehicle Charging Efficiency (전기자동차 충전 효율성을 고려한 모바일 에지 컴퓨팅 기반 충전 인프라 구조)

  • Lee, Juyong;Lee, Jihoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.10
    • /
    • pp.669-674
    • /
    • 2017
  • Due to the depletion of fossil fuels and the increase in environmental pollution, electric vehicles are attracting attention as next-generation transportation and are becoming popular all over the world. As the interest in electric vehicles and the penetration rate increase, studies on the charging infrastructure with vehicle-to-grid (V2G) technology and information technology are actively under way. In particular, communication with the grid network is the most important factor for stable charging and load management of electric vehicles. However, with the existing centralized infrastructure, there are problems when control-message requests increase and the charging infrastructure cannot efficiently operate due to slow response speed. In this paper, we propose a new charging infrastructure using mobile edge computing (MEC) that mitigates congestion and provides low latency by applying distributed cloud computing technology to wireless base stations. Through a performance evaluation, we confirm that the proposed charging infrastructure (with low latency) can cope with peak conditions more efficiently than the existing charging infrastructure.

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies (4차 산업혁명 기술에 기반한 농업 기상 정보 시스템의 요구도 분석)

  • Kim, Kwang Soo;Yoo, Byoung Hyun;Hyun, Shinwoo;Kang, DaeGyoon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.3
    • /
    • pp.175-186
    • /
    • 2019
  • Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.