Browse > Article
http://dx.doi.org/10.5532/KJAFM.2019.21.3.175

Requirement Analysis for Agricultural Meteorology Information Service Systems based on the Fourth Industrial Revolution Technologies  

Kim, Kwang Soo (Department of Plant Science, Seoul National University)
Yoo, Byoung Hyun (Department of Plant Science, Seoul National University)
Hyun, Shinwoo (Department of Plant Science, Seoul National University)
Kang, DaeGyoon (Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University)
Publication Information
Korean Journal of Agricultural and Forest Meteorology / v.21, no.3, 2019 , pp. 175-186 More about this Journal
Abstract
Efforts have been made to introduce the climate smart agriculture (CSA) for adaptation to future climate conditions, which would require collection and management of site specific meteorological data. The objectives of this study were to identify requirements for construction of agricultural meteorology information service system (AMISS) using technologies that lead to the fourth industrial revolution, e.g., internet of things (IoT), artificial intelligence, and cloud computing. The IoT sensors that require low cost and low operating current would be useful to organize wireless sensor network (WSN) for collection and analysis of weather measurement data, which would help assessment of productivity for an agricultural ecosystem. It would be recommended to extend the spatial extent of the WSN to a rural community, which would benefit a greater number of farms. It is preferred to create the big data for agricultural meteorology in order to produce and evaluate the site specific data in rural areas. The digital climate map can be improved using artificial intelligence such as deep neural networks. Furthermore, cloud computing and fog computing would help reduce costs and enhance the user experience of the AMISS. In addition, it would be advantageous to combine environmental data and farm management data, e.g., price data for the produce of interest. It would also be needed to develop a mobile application whose user interface could meet the needs of stakeholders. These fourth industrial revolution technologies would facilitate the development of the AMISS and wide application of the CSA.
Keywords
Cloud computing; IoT; Deep neural network; Mobile application; Industrial revolution;
Citations & Related Records
Times Cited By KSCI : 9  (Citation Analysis)
연도 인용수 순위
1 Nikolidakis, S. A., D. Kandris, D. D. Vergados, and C. Douligeris, 2015: Energy efficient automated control of irrigation in agriculture by using wireless sensor networks. Computers and Electronics in Agriculture 113, 154-163.   DOI
2 Oh, J. H., 2018: A Study on the Public-private Governance on Risk Management for the 4th Industrial Revolution - Focusing on the Role of Private Experts in the Early Warning System. Crisis and Emergency Management: Theory and Praxis 14(1), 57-75.   DOI
3 Ojha, T., S. Misra, and N. S. Raghuwanshi, 2015: Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Computers and Electronics in Agriculture 118, 66-84.   DOI
4 Park, J. S., Y. A. Seo, K. R. Kim, and J.-C. Ha, 2018: Evaluating the prediction models of leaf wetness duration for citrus orchards in Jeju, South Korea. Korean Journal of Agricultural and Forest Meteorology 20(3), 262-276.   DOI
5 Pierce, F. J., and T. V. Elliott, 2008: Regional and on-farm wireless sensor networks for agricultural systems in Eastern Washington. Computers and Electronics in Agriculture 61(1), 32-43.   DOI
6 Jha, P. K., P. Athanasiadis, S. Gualdi, A. Trabucco, V. Mereu, V. Shelia, and G. Hoogenboom, 2019: Using daily data from seasonal forecasts in dynamic crop models for yield prediction: A case study for rice in Nepal's Terai. Agricultural and Forest Meteorology 265, 349-358.   DOI
7 Zhao, G., S. Siebert, A. Enders, E. E. Rezaei, C. Yan, and F. Ewert, 2015: Demand for multi-scale weather data for regional crop modeling. Agricultural and Forest Meteorology 200, 156-171.   DOI
8 Song, J., S.-J. Lee, M. Kang, M. Moon, J.-H. Lee, and J. Kim, 2015: High-resolution numerical simulations with WRF/Noah-MP in Cheongmicheon farmland in Korea during the 2014 special observation period. Korean Journal of Agricultural and Forest Meteorology 17(4), 384-398.   DOI
9 Srbinovska, M., C. Gavrovski, V. Dimcev, A. Krkoleva, and V. Borozan, 2015: Environmental parameters monitoring in precision agriculture using wireless sensor networks. Journal of Cleaner Production 88, 297-307.   DOI
10 Yun, J. I., S.-O. Kim, J.-H. Kim, and D.-J. Kim, 2013: User-specific agrometeorological service to local farming community: a case study. Korean Journal of Agricultural and Forest Meteorology 15(4), 320-331.   DOI
11 Zhu, W., A. Lu, S. Jia, J. Yan, and R. Mahmood, 2017: Retrievals of all-weather daytime air temperature from MODIS products. Remote Sensing of Environment 189, 152-163.   DOI
12 Thornton, P. E., M. M. Thornton, B. W. Mayer, N. Wilhelmi, Y. Wei, R. Devarakonda, and R. Cook, 2012: Daymet: Daily surface weather on a 1 km grid for North America, 1980-2008. Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center for Biogeochemical Dynamics (DAAC).
13 Stefanski, R., and M. V. K. Sivakumar, 2007: World AgroMeterological Information Service (WAMIS). Meteorological Applications 13(S1).
14 Stoces, M., J. Vanek, J. Masner, and J. Pavlik, 2016: Internet of Things (IoT) in agriculture - Selected aspects. Agris on-line Papers in Economics and Informatics VIII(1), 83-88.   DOI
15 Tadesse, G., and G. Bahiigwa, 2015: Mobile phones and farmers' marketing decisions in Ethiopia. World development 68, 296-307.   DOI
16 Tzounis, A., N. Katsoulas, T. Bartzanas, and C. Kittas, 2017: Internet of Things in agriculture, recent advances and future challenges. Biosystems Engineering 164, 31-48.   DOI
17 Vasisht, D., Z. Kapetanovic, J. Won, X. Jin, R. Chandra, S. Sinha, A. Kapoor, M. Sudarshan, and S. Stratman, 2017: Farmbeats: An iot platform for data-driven agriculture. 14th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI} 17), 515-529.
18 Vuran, M. C., A. Salam, R. Wong, and S. Irmak, 2018: Internet of underground things: Sensing and communications on the field for precision agriculture. 586-591.
19 Yoo, B. H., K. S. Kim, and J. Lee, 2019: The use of MODIS atmospheric products to estimate cooling degree days at weather stations in South and North Korea. Korean Journal of Agricultural and Forest Meteorology 21(2), 97-109.   DOI
20 Yun, J.-I., 2010: Agroclimatic maps augmented by a GIS technology. Korean Journal of Agricultural and Forest Meteorology 12(1), 63-73.   DOI
21 Reche, A., S. Sendra, J. R. Diaz, and J. Lloret, 2014: A smart M2M deployment to control the agriculture irrigation, International conference on ad-hoc networks and wireless, Springer, 139-151.
22 Popovic, T., N. Latinovic, A. Pesic, Z. Zecevic, B. Krstajic, and S. Djukanovic, 2017: Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study. Computers and Electronics in Agriculture 140, 255-265.   DOI
23 Prescott, J. A., 1940: Evaporation from a water surface in relation to solar radiation. Transactions of the royal society of Royal Society of South Austral alia 46, 114-118.
24 Rad, C.-R., O. Hancu, I.-A. Takacs, and G. Olteanu, 2015: Smart monitoring of potato crop: a cyber-physical system architecture model in the field of precision agriculture. Agriculture and Agricultural Science Procedia 6, 73-79.   DOI
25 Kim, K. S., 2002: Optimal weather variables for estimation of leaf wetness duration using an empirical method. Korean Journal of Agricultural and Forest Meteorology 4(1), 23-28.
26 Kang, D., S. Hyun, and K. S. Kim, 2019: Development of a deep neural network model to estimate solar radiation using temperature and precipitation. Korean Journal of Agricultural and Forest Meteorology 21(2), 85-96.   DOI
27 Kendon, M., M. McCarthy, S. Jevrejeva, A. Matthews, and T. Legg, 2019: State of the UK climate 2018. International Journal of Climatology 39(S1), 1-55.
28 Kim, D.-J., and J. I. Yun, 2013: Improving usage of the Korea Meteorological Administration's digital forecasts in agriculture: 2. Refining the distribution of precipitation amount. Korean Journal of Agricultural and Forest Meteorology 15(3), 171-177.   DOI
29 Kim, K. S., 2011: Impact assessment of climate change by using cloud computing. Korean Journal of Agricultural and Forest Meteorology 13(2), 101-108.   DOI
30 Kim, K. S., S. E. Taylor, and M. L. Gleason, 2004: Development and validation of a leaf wetness duration model using a fuzzy logic system. Agricultural and Forest Meteorology 127(1-2), 53-64.   DOI
31 Bonomi, F., R. Milito, J. Zhu, and S. Addepalli, 2012: Fog computing and its role in the internet of things, Proceedings of the first edition of the MCC workshop on Mobile cloud computing, ACM, 13-16.
32 Rosenzweig, C., J. Elliott, D. Deryng, A. C. Ruane, C. Muller, A. Arneth, K. J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T. A. M. Pugh, E. Schmid, E. Stehfest, H. Yang, and J. W. Jones, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences 111(9), 3268-3273.   DOI
33 Ruane, A. C., R. Goldberg, and J. Chryssanthacopoulos, 2015: Climate forcing datasets for agricultural modeling: Merged products for gap-filling and historical climate series estimation. Agricultural and Forest Meteorology 200, 233-248.   DOI
34 Running, S. W., R. R. Nemani, F. A. Heinsch, M. Zhao, M. Reeves, and H. Hashimoto, 2004: A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54(6), 547-560.   DOI
35 Kim, K. S., S. E. Taylor, M. L. Gleason, and K. J. Koehler, 2002: Model to enhance site-specific estimation of leaf wetness duration. Plant Disease 86(2), 179-185.   DOI
36 Kim, K. S., S. E. Taylor, M. L. Gleason, F. W. Nutter Jr, L. B. Coop, W. F. Pfender, R. C. Seem, P. C. Sentelhas, T. J. Gillespie, and A. Dalla Marta, 2010: Spatial portability of numerical models of leaf wetness duration based on empirical approaches. Agricultural and Forest Meteorology 150(7-8), 871-880.   DOI
37 Adair, E. C., L. Barbieri, K. Schiavone, and H. M. Darby, 2019: Manure application decisions impact nitrous oxide and carbon dioxide emissions during mon-growing season thaws. Soil Science Society of America Journal 83(1), 163pp.   DOI
38 Bai, X., Z. Wang, L. Zou, and F. E. Alsaadi, 2018: Collaborative fusion estimation over wireless sensor networks for monitoring CO2 concentration in a greenhouse. Information Fusion 42, 119-126.   DOI
39 Barnett, B. J., and O. Mahul, 2007: Weather index insurance for agriculture and rural areas in lower-income countries. American Journal of Agricultural Economics 89(5), 1241-1247.   DOI
40 Besharat, F., A. A. Dehghan, and A. R. Faghih, 2013: Empirical models for estimating global solar radiation: A review and case study. Renewable and Sustainable Energy Reviews 21, 798-821.   DOI
41 Celik, O., A. Teke, and H. B. Yildirim, 2016: The optimized artificial neural network model with Levenberg-Marquardt algorithm for global solar radiation estimation in Eastern Mediterranean Region of Turkey. Journal of Cleaner Production 116, 1-12.   DOI
42 Chavas, D. R., R. C. Izaurralde, A. M. Thomson, and X. Gao, 2009: Long-term climate change impacts on agricultural productivity in eastern China. Agricultural and Forest Meteorology 149(6-7), 1118-1128.   DOI
43 Freebairn, J. W., and J. W. Zillman, 2002: Economic benefits of meteorological services. Meteorological Applications 9(1), 33-44.   DOI
44 Choi, M.-H., J.-I. Yun, U. R. Chung, and K.-H. Moon, 2010: Performance of Angstrom-Prescott Coefficients under different time scales in estimating daily solar radiation in South Korea. Korean Journal of Agricultural and Forest Meteorology 12(4), 232-237.   DOI
45 Coates, R. W., M. J. Delwiche, A. Broad, and M. Holler, 2013: Wireless sensor network with irrigation valve control. Computers and Electronics in Agriculture 96, 13-22.   DOI
46 Davcev, D., K. Mitreski, S. Trajkovic, V. Nikolovski, and N. Koteli, 2018: IoT agriculture system based on LoRaWAN. 1-4.
47 Dimatteo, S., P. Hui, B. Han, and V. O. K. Li, 2011: Cellular traffic offloading through WiFi networks. 192-201.
48 Foughali, K., K. Fathallah, and A. Frihida, 2018: Using cloud IOT for disease prevention in precision agriculture. Procedia Computer Science 130, 575-582.   DOI
49 Frere, M., and G. Popov, 1979: Agrometeorological crop monitoring and forecasting, FAO.
50 Gleason, M. L., S. K. Parker, R. E. Pitblado, R. X. Latin, D. Speranzini, R. V. Hazzard, M. J. Maletta, W. P. Cowgill, and D. L. Biederstedt, 1997: Validation of a commercial system for remote estimation of wetness duration. Plant Disease 81(7), 825-829.   DOI
51 Gubbi, J., R. Buyya, S. Marusic, and M. Palaniswami, 2013: Internet of Things (IoT): A vision, architectural elements, and future directions. Future Generation Computer Systems 29(7), 1645-1660.   DOI
52 Gutierrez, J., J. F. Villa-Medina, A. Nieto-Garibay, and M. A. Porta-Gandara, 2014: Automated irrigation system using a wireless sensor network and GPRS module. IEEE Transactions on Instrumentation and Measurement 63(1), 166-176.   DOI
53 Langendoen, K., A. Baggio, and O. Visser, 2006: Murphy loves potatoes: Experiences from a pilot sensor network deployment in precision agriculture. Proceedings 20th IEEE international parallel & distributed processing symposium, IEEE, 8pp.
54 Kim, S.-O., D.-J. Kim, J.-H. Kim, and J. I. Yun, 2013: Improving usage of the Korea Meteorological Administration's digital forecasts in agriculture: I. Correction for local temperature under the inversion condition. Korean Journal of Agricultural and Forest Meteorology 15(2), 76-84.   DOI
55 Kim, Y., R. G. Evans, and W. M. Iversen, 2008: Remote sensing and control of an irrigation system using a distributed wireless sensor network. IEEE transactions on instrumentation and measurement 57(7), 1379-1387.   DOI
56 Kulau, U., S. Schildt, S. Rottmann, B. Gernert, and L. Wolf, 2015: Demo: PotatoNet -- Robust outdoor testbed for WSNs. 59-60.
57 Lee, C.-K., J. Kim, and K. S. Kim, 2015: Development and application of a weather data service client for preparation of weather input files to a crop model. Computers and Electronics in Agriculture 114, 237-246.   DOI
58 Lee, M.-h., K.-b. Eom, H.-j. Kang, C.-s. Shin, and H. Yoe, 2008: Design and implementation of wireless sensor network for ubiquitous glass houses. 397-400.
59 Madeira, A. C., K. S. Kim, S. E. Taylor and M. L. Gleason, 2002: A simple cloud-based energy balance model to estimate dew. Agricultural and Forest Meteorology 111(1), 55-63.   DOI
60 Lee, M., J. Hwang, and H. Yoe, 2013: Agricultural production system based on IoT. 833-837.
61 Mekala, M. S., and P. Viswanathan, 2019: CLAY-MIST: IoT-cloud enabled CMM index for smart agriculture monitoring system. Measurement 134, 236-244.   DOI
62 Hollis, D., M. McCarthy, M. Kendon, T. Legg, and I. Simpson, 2019: HadUK-Grid-A new UK dataset of gridded climate observations. Geoscience Data Journal.
63 Mesas-Carrascosa, F. J., D. Verdú Santano, J. E. Merono, M. Sanchez de la Orden, and A. Garcia-Ferrer, 2015: Open source hardware to monitor environmental parameters in precision agriculture. Biosystems Engineering 137, 73-83.   DOI
64 Minet, J., Y. Curnel, A. Gobin, J.-P. Goffart, F. Melard, B. Tychon, J. Wellens, and P. Defourny, 2017: Crowdsourcing for agricultural applications: A review of uses and opportunities for a farmsourcing approach. Computers and Electronics in Agriculture 142, 126-138.   DOI
65 Muller, C., L. Chapman, S. Johnston, C. Kidd, S. Illingworth, G. Foody, A. Overeem, and R. Leigh, 2015: Crowdsourcing for climate and atmospheric sciences: current status and future potential. International Journal of Climatology 35(11), 3185-3203.   DOI
66 Hansen, J. W., A. Potgieter, and M. K. Tippett, 2004: Using a general circulation model to forecast regional wheat yields in northeast Australia. Agricultural and Forest Meteorology 127(1-2), 77-92.   DOI
67 Heble, S., A. Kumar, K. V. V. D. Prasad, S. Samirana, P. Rajalakshmi, and U. B. Desai, 2018: A low power IoT network for smart agriculture. 609-614.
68 Hyun, S., and K. S. Kim, 2016: Assessment of the Angstrom-Prescott Coefficients for estimation of solar radiation in Korea. Korean Journal of Agricultural and Forest Meteorology 18(4), 221-232.   DOI
69 Hyun, S., and K. S. Kim, 2017: Estimation of heading eate for rice cultivars using ORYZA (v3). Korean Journal of Agricultural and Forest Meteorology 19(4), 246-251.   DOI
70 Ivanov, S., K. Bhargava, and W. Donnelly, 2015: Precision farming: Sensor analytics. IEEE Intelligent Systems 30(4), 76-80.   DOI
71 Jang, K., S. Kang, J. Kimball, and S. Hong, 2014: Retrievals of all-weather daily air temperature using MODIS and AMSR-E data. Remote Sensing 6(9), 8387-8404.   DOI
72 Jensen, A. L., P. S. Boll, I. Thysen, and B. K. Pathak, 2000: $Pl@nteInfo^{R}$ - a web-based system for personalised decision support in crop management. Computers and Electronics in Agriculture 25(3), 271-293.   DOI