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Abstract 
 

The intelligent agriculture monitoring is based on the perception and analysis of 
environmental data, which enables the monitoring of the production environment and the 
control of environmental regulation equipment. As the scale of the application continues to 
expand, a large amount of data will be generated from the perception layer and uploaded to 
the cloud service, which will bring challenges of insufficient bandwidth and processing 
capacity. A fog-based offline and real-time hybrid data analysis architecture was proposed in 
this paper, which combines offline and real-time analysis to enable real-time data processing 
on resource-constrained IoT devices. Furthermore, we propose a data process-ing algorithm 
based on the incremental principal component analysis, which can achieve data 
dimensionality reduction and update of principal components. We also introduce the concept 
of Squared Prediction Error (SPE) value and realize the abnormal detection of data through 
the combination of SPE value and data fusion algorithm. To ensure the accuracy and 
effectiveness of the algorithm, we design a regular-SPE hybrid model update strategy, which 
enables the principal component to be updated on demand when data anomalies are found. In 
addition, this strategy can significantly reduce resource consumption growth due to the data 
analysis architectures. Practical datasets-based simulations have confirmed that the proposed 
algorithm can perform data fusion and exception processing in real-time on 
resource-constrained devices; Our model update strategy can reduce the overall system 
resource consumption while ensuring the accuracy of the algorithm. 

 
Keywords: Incremental Principal Component Analysis, Offline and real-time learning, Fog 
Computing, Data anomaly detection 
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1. Introduction 

The Internet of Things provides ubiquitous services by connecting people and devices. As 
an important part of the IoT, the application for the agricultural monitoring is constantly 
improving. Most of the applications are based on wireless sensor networks, short-range 
wireless communication, and cloud computing [1]. With the expansion of production, the 
number of nodes will increase. The increasing number of nodes will raise the cost and will 
also generate large-scale, real-time, heterogeneous data, which, in turn, makes the 
application more complex. Thus, applications based on traditional cloud computing have 
problems with these aspects: limited bandwidth, high latency, slow response, and risk of 
service interruption. These problems will significantly affect the reliability and real-time of 
the application, and will represent an important challenge to the cloud in terms of access 
capabilities, storage capabilities, and processing capabilities. 

There are significant characteristics of the agricultural environment data. For instance, 
agriculture environmental data is typically generated from wireless sensor nodes that are 
widely deployed in a wide range of production. Because of the large number and variety of 
nodes deployed, high-dimensional and large-scale data will be generated. In order to 
accurately capture the changes in the environment, nodes need to collect real-time data. As 
the changes in environmental indicators are relatively small in a short time, there is a lot of 
redundancy in the collected data. Uploading this data without compression can be a huge 
bandwidth consumption. In addition, the node may produce wrong data under the influence 
of energy status, communication ability and hardware. These data errors can be categorized 
into random errors and systematic errors. Data errors can significantly affect the reliability 
and effectiveness of data processing, especially in the early stage of data analysis application. 
Considering these characteristics of agricultural environmental data, it is necessary to realize 
real-time data compression and data anomaly detection in agricultural monitoring 
applications. 

In order to solve the bandwidth bottleneck and delay problems in IoT applications based 
on traditional cloud services, relevant researches put forward the concept of fog computing 
[2,3]. Fog computing is a paravirtualized service computing architecture between cloud 
computing and personal computing. Building IoT applications based on fog computing has 
the following advantages: 

1) Make full use of the computing resources of tiny IoT devices. These tiny devices are 
capable of communication and data processing. They cost less, but their computing resources 
are limited, so most of them are only used as data forwarding and storage devices in 
traditional IoT applications. Under the fog computing architecture, it is possible to optimize 
the traditional data processing algorithms and innovate the existing architecture, migrate 
applications to these tiny devices, thereby achieving full utilization of computing resources. 

2) Reduce bandwidth consumption. Data processing applications based on fog 
computing can run much closer to where the data is generated so that most of the data can be 
processed locally without uploading to the cloud, which greatly reduces the bandwidth 
consumption. 

3) Provide data processing services with low latency, high stability, and well privacy 
protection. The existing IoT applications rely on cloud service excessively. Cloud-based IoT 
applications have problems with high data transmission delay and privacy protection. 
Besides, the failure of cloud platforms directly affects the normal use of services, and the 
failure even causes service interruption. Whether the excessive delay or the risk of service 
interruption is unacceptable in medical application and safety production, the fog computing 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020             3991 

architecture can significantly reduce the time delay and eliminate service outages, which 
protect the privacy of individuals. 

Although fog computing has advantages showing above, the following problems still exist: 
The implementation of high-complexity algorithms is not supported on fog devices with 
limited resources, and it is difficult for the algorithm to guarantee the real-time processing. 
Though the existing relevant algorithms based on machine learning have realized anomaly 
detection and data fusion, they are not suitable for fog computing architecture due to their 
high complexity and requirements on computing resources. Moreover, most of these 
algorithms need to complete data analysis model training before they are applied to data 
analysis. Considering the real-time and large-scale characteristics of agricultural 
environmental data, it is difficult for these algorithms to deal with the real-time data of IoT 
and maintain high accuracy. An effective approach is to repeat the model training to obtain 
the latest model to ensure the accuracy of the algorithm, but it will cause a large waste of 
computing resources. Therefore, when applying the data processing algorithm in the fog 
computing architecture, it is necessary to consider the overall resource requirements of the 
algorithm, the real-time data processing capability, the resource consumption of the 
algorithm and whether the algorithm can achieve model update with low resource 
occupancy. 

In this paper, we propose an offline and real-time data analysis architecture for fog 
computation analysis. The contributions of our work are summarized as follows: 

1) The architecture realizes the real-time data processing by separating the model training 
and model usage. The offline system can perform model updating and training, while the 
real-time system relies on the model provided by the offline system to perform real-time data 
processing. 

2) We construct an Incremental Principal Component Analysis (IPCA)-based data 
compression and anomaly detection algorithm to reduce the dimensionality and the scale of 
data upload. In addition, we utilize SPE [4] and the extracted PCs to detect abnormal data as 
the abnormality of the data will cause the defect of the SPE. 

3) We propose a hybrid model update strategy to update the model at specific time 
intervals, and perform additional updates based on SPE to ensure the effectiveness of the 
model. The strategy supports the existing algorithms to perform real-time data processing, 
complete model updates with lower resources, reduce resource consumption, and ensure 
accuracy of the algorithm. 

The rest of this paper is organized as follows: In Section II, some data anomaly detection 
and compression algorithms are surveyed and summarized. Section III elaborates on the 
details of the offline and real-time data analysis architecture based on fog computing, and 
Section IV elaborates on IPCA-based data compression and anomaly detection algorithms in 
detail. Our test results are discussed in Section V, while our conclusions are offered in 
Section VI. 

2. Related Works on Data Compression and Anomaly Detection 
To solve the problems in intelligence agriculture scenarios which caused by data 

anomalies and large-scale data uploads, related works have proposed some IoT data 
processing algorithms based on fog computing. Since the related work in this paper is based 
on research, a brief overview of this research is provided below. 

1) Clustering and classification algorithms based on machine learning. P. Verma and 
S. K.Sood [5], an improved two-layer naive Bayes classifier is proposed, which captures 
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abnormal data based on the naive Bayes algorithm. A. Akbar et al. [6] researched data 
processing algorithms in traffic scenarios. The author integrated the single sensor data into 
events, and classified these events to obtain more accurate and complex event outputs. D. 
Borthakur et al. [7] used K-means clustering algorithm to extract data features on tiny 
computing devices, which divides the data into several clusters containing similar data 
features through continuous iteration. The algorithm uploads these features so that the scale 
of uploaded data will be reduced. 

2) Anomaly detection and data compression algorithms for sensor nodes. These 
algorithms aim at detecting abnormal data collected by neighboring sensor nodes. S. Ji et al. 
[8] proposed an algorithm of node anomaly detection, which uses a weighted average 
method to detect the abnormality of the data uploaded by the node and use the result to 
determine the working status of the node. An idea of trust computing was proposed by G. 
Zhang et al. [9], which is to perform correlation analysis on data generated by multiple 
sensor nodes and upload trusted data, so as to remove redundant data and reduce bandwidth 
consumption. S. Ghiasi et al. [10] proposed an algorithm for supplementing the nearest 
neighbor data. The sensor nodes perform lightweight filtering on the collected data through 
preset thresholds. The data of multiple sensors will be analyzed uniformly to eliminate 
abnormal data. At the same time, in order to avoid the impact of data missing, the deleted 
abnormal data will be supplemented by the algorithm. 
3) Data compress and reduce. To reduce the dimensionality of data, related works have 
been carried out [11-13]. The intuitive covariance-independent-free principal component 
analysis algorithm [14] (CCIPCA) does not need to calculate the covariance matrix during 
analysis, which can greatly reduce the consumption of computing resources and make the 
algorithm more complex and difficult to expand. However, the above algorithms have not 
considered the problem of model updating. T. Yu et al. [15] proposed an anomaly detection 
algorithm based on PCA and a method for the principal component update, which can update 
the principal component in real-time to achieve large-scale sensor data compression and 
anomaly detection. Hou, Ranran et al. [16] proposed a multi-parameter data anomaly 
detection algorithm based on IPCA. This algorithm uses an online model update strategy to 
ensure accuracy. 

 
Fig. 1. IoT fog computing application architecture 
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In addition to research on data processing algorithms, this section also summarizes 
research on fog-based IoT applications and data processing architecture. M.Chiang and T. 
Zhang [17] elaborated on the challenges, advantages and development opportunities of fog 
computing, and introduced some typical fog-based applications. J. Moon et al. [18] proposes 
a framework and schemes for collaboration between the edge server and a cloud server. The 
framework aims to use the powerful information processing and search capabilities of cloud 
computing to enable edge computing devices to meet various performance requirements of 
heterogeneous wireless IoT networks. B. Tang et al. [19] introduced a fog-based multi-level 
data processing architecture in smart city pipeline monitoring applications. This architecture 
enables applications to cope with the challenges brought by the continuous growth of access 
devices by dispersing complex functions into different processing levels. Some fog-based 
medical data collection systems were proposed in [20,21], which realize real-time 
monitoring of the critical patients through real-time collection and analysis of medical data. 
Extensive related works were carried out to solve the problems of applying complex machine 
learning algorithms in resource-constrained scenarios [22,23], which implement data 
analysis on resource-constrained IoT nodes. In addition, related research also focuses on the 
data security and privacy issues of fog-based applications. In response to the privacy leakage 
problem of existing cloud service synchronization methods, Pooranian Z.et.al [24] proposed 
a RARE method that enables the cloud service to return a random response after receiving a 
deduplication request. This method can retain the advantages of existing synchronization 
methods and reduce the risk of user privacy leakage. 

 

3. Offline and Real-Time Hybrid Data Analysis Architecture 

Generally, fog-based IoT architecture can be implemented by adding a fog layer between 
the cloud platform and the perception layer, which is closer to the area where the data is 
generated. The application architecture is shown in Fig. 1. 

In order to deploy data processing on fog computing, a data analysis architecture is 
proposed, as shown in Fig. 2. The architecture is implemented on one or more computing 
devices, which are located in the fog computing layer and have basic data exchange and 
processing capabilities. The architecture is mainly divided into two parts: offline analysis 
and real-time analysis. Offline analysis refers to offline model training without affecting 
real-time data processing, which can be deployed centrally or in a distributed manner with 
real-time analysis. Because offline analysis mainly completes model training in parallel, 
real-time analysis can be established based on the offline analysis. Also, offline analysis can 
obtain the latest model by repeating the model training or update the model by incremental 
analysis algorithms. At this time, the real-time analysis can use the latest model for data 
analysis, which ensures low latency and high accuracy, and also improves the efficiency of 
data analysis. It mainly relies on the model provided by offline analysis to handle real-time 
data. These processes include detecting abnormal and reducing the dimension of the data. 
Since there is no need for model training, real-time analysis can achieve the rapid analysis of 
small batches of data. 



3994                                         Yu et al.: Data anomaly detection and Data fusion based on Incremental 
Principal Component Analysis in Fog Computing 

 
Fig. 2. Offline and real-time analysis architecture 
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model, which is obtained based on the offline analysis system. Based on the acquired model, 
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analysis model. 
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In order to reduce the cost of the system, it is necessary to avoid unnecessary model 
updates, while reducing the frequency of data and model update requests. To this end, we 
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number of model training and information exchange between devices, reduce the system's 
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application scenarios. Some basic model update strategies include regular strategies and 
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updated model does not change much from the previous model. Therefore, this strategy is 
not applicable in most cases.2) Update the model regularly. The regular update strategy is 
to perform offline model training at certain intervals. The update interval of the model can be 
adjusted according to the real-time and accuracy requirements of the application, so it has 
high adaptability. However, the disadvantages of the regular update strategy are also obvious. 
When the amount of data processed is small, and the data changes greatly in a short period, if 
the model cannot be updated, the abnormal data may be missed or misjudged.  

In addition to the above update strategies, other different update strategies can be applied 
to the system. After the system confirms the model update strategy, it decides whether to 
training the new analysis model according to the specified update strategy. If the update is 
eligible, the offline analysis system will be called, and the new analysis model will be 
updated to the real-time analysis system. Therefore, the real-time system can use the updated 
model for analysis. Compared with integrating model training and data analysis functions 
into one system, the proposed data analysis architecture has the following characteristics: 
The architecture supports the distribution of different computing tasks to different nodes or 
the handing of complex computing tasks to cloud services, which can solve the problem of 
the insufficient computing capacity of fog nodes to a certain extent and enable complex 
algorithms to be applied in fog computing scenarios; By applying different model update 
strategies, the architecture can adapt to different scenarios and requirements and reduce the 
overall resource consumption of the algorithm. 

4. Data compression and anomaly detection algorithm based on 
incremental principal component analysis 

In this section, we mainly elaborate on the proposed data processing algorithm., which is 
divided into two parts: data compression and data anomaly detection. In addition, we also 
introduce the specific implementation of the algorithm in the offline and real-time hybrid 
data analysis architecture. 

4.1 Data compression algorithm 
In this section, we first introduce the PCA algorithm briefly, which is the basis of the 

IPCA algorithm. Suppose the data is stored in the form of a matrix, where matrix rows 
represent data records, and matrix columns represent data features. 

                    𝑋𝑋 = �
𝑥𝑥11 ⋯ 𝑥𝑥1𝑘𝑘
⋮ ⋱ ⋮
𝑥𝑥𝑛𝑛1 ⋯ 𝑥𝑥𝑛𝑛𝑛𝑛

� = (𝑋𝑋1,𝑋𝑋2, … .𝑋𝑋𝑘𝑘)               (1) 

 
Considering that there are differences in the value range of different dimensions of data, 

and the algorithm requires the data conform to the characteristics of the normal distribution, 
the Z-score normalization method is used to normalize the data. 

 
                             𝑥𝑥∗ = 𝑥𝑥−𝜇𝜇

𝜎𝜎
                                 (2) 

 
The PCA calculates the covariance matrix Z and performs eigenvalue decomposition to 

obtain a vector matrix containing the PCs (Principal Components). 
 

        𝑍𝑍 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇                                (3) 
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Where P contains d eigenvectors corresponding to the eigenvalues, d represents the 

number of vectors in the covariance matrix, and Λ is the eigenvalue matrix. Suppose the 
eigenvectors 𝑃𝑃(𝑢𝑢1,𝑢𝑢2, …𝑢𝑢𝑑𝑑) corresponding to d largest eigenvalues of Λ are obtained, we 
get m PCs（𝑝𝑝𝑝𝑝1,𝑝𝑝𝑝𝑝2,𝑝𝑝𝑝𝑝3,…𝑝𝑝𝑝𝑝𝑚𝑚）from P. After the PCs are extracted, the PCA algorithm can 
realize the dimensionality reduction of the data. 

In the previous part, we elaborate on the data compression algorithm based on the PCA. 
Compared with the PCA, IPCA can complete model updates based on existing models and 
the small batch of new input data and requires fewer resources. We assume that the analysis 
model of IPCA is ω = (μ, σ, P, Λ, N), where μ represents the mean of the data, σ represents 
the standard deviation, and N is the number of current data. Before updating the PCs, the 
mean and standard deviation needs to be updated. The parameter update method is expressed 
as 

 
𝜇𝜇′ = 1

𝑁𝑁+1
𝜇𝜇 + 1

𝑁𝑁+1
𝑋𝑋𝑁𝑁+1                          (4) 

𝜎𝜎 = 𝑁𝑁
𝑁𝑁+1

∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇′)2 + 1
𝑁𝑁+1

(𝑥𝑥𝑁𝑁+1 − 𝜇𝜇′)2𝑁𝑁
𝑖𝑖=1          (5) 

 
𝑋𝑋𝑁𝑁+1represents the current input data. According to (4) and (5), the mean and standard 
deviation can be updated when new data arrives. After the mean and standard deviation are 
updated, the IPCA algorithm can update the existing principal component. When new data 
𝑋𝑋𝑁𝑁+1 is input [25], the residual vector r can be expressed as 
 

𝑟𝑟 = (𝑥𝑥𝑁𝑁+1 − 𝜇𝜇′) − 𝑃𝑃𝑃𝑃𝑇𝑇(𝑥𝑥𝑁𝑁+1 − 𝜇𝜇′)               (6) 
 

The eigenvalue decomposition of the updated covariance matrix Z is required to obtain the 
updated PCs. When new data is added to the data matrix, the new covariance matrix 𝑍𝑍′ is 
expressed as 

𝑍𝑍′ = �
𝑍𝑍 𝑥𝑥𝑁𝑁+1
0 ||𝑟𝑟|| �                               (7) 

 
Based on the eigenvalue decomposition of the new covariance matrix 𝑍𝑍′, the result can be 

used to update the original PCs. The dimension reduction of data can be realized based on 
the PCs updated. 

 

4.2 Data anomaly detection algorithm 
After extracting the PCs and compressing the data, we elaborate on the data anomaly 

detection algorithm based on the SPE value and the PCs. The SPE value refers to the square 
of the norm between the original data matrix and the reconstructed data matrix, which is 
similar to the concept of residual in mathematical statistics. Data refactoring takes the 
following approach. 

𝑋𝑋𝑟𝑟𝑟𝑟 = 𝑋𝑋 ∗ 𝑃𝑃 ∗ 𝑃𝑃𝑇𝑇                            (8) 
 

After data reconstruction, the SPE value is calculated as follows 
 

𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = ||𝑋𝑋 − 𝑋𝑋𝑟𝑟𝑟𝑟||22                        (9) 
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The above formula is used to calculate the SPE value of a single data. In the analysis of 
batch data, we generally take the mean value of the SPE value calculated from all data. 
When the data is approximately normal distribution, based on the relevant work in [15], we 
use the pauta criterion to detect data anomalies. The pauta criterion holds that data are 
reliable if the absolute value of the difference between the measured data and the estimated 
data is less than three times the standard deviation of the measured data. If the standard 
deviation of the data exceeds three times the standard value, the data can be considered 
abnormal; otherwise, the data can be considered in the normal range. The pauta criterion is 
expressed as follows: 

|𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) − 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆| > 𝜀𝜀𝑎𝑎 ∗ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆                    (10) 
 

SPE (t) represents the SPE value of the current data, 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 represents the average value of 
all SPEs, 𝜀𝜀𝑎𝑎is 3, and 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆is the standard deviation of SPE values. Based on the above 
process, we can complete data compression and anomaly detection. 

Considering that the existing update strategy for the model cannot solve the problem of 
high resource occupancy caused by the data analysis architecture, in order to avoid the 
impact of abnormal data on the accuracy of data analysis, we design a regular-SPE hybrid 
model update strategy to achieve the model update on demand and reduce the overall 
resource consumption. Different from the model update strategy based on the SPE proposed 
in [27], the regular strategy can ensure that the model keeps updating steadily, thereby 
ensuring the accuracy of the algorithm model in the early stage of application. At the same 
time, the SPE value can also solve the problem that the regular update strategy cannot be 
updated immediately and the update interval is difficult to set. The update strategy is as 
follows 

                   �
  𝑆𝑆𝑆𝑆𝑆𝑆 > 𝜂𝜂    𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑆𝑆𝑆𝑆𝑆𝑆 < 𝜂𝜂    𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟                 (11) 

 
where η represents the threshold of model updates, SPE represents the distance between the 
current data point and the projection plane of the principal component. When the SPE value 
of the data does not exceed the threshold value, it is considered that the influence of the 
current data on the PCs is within the controllable range, and the PCs do not need to be 
adjusted. Therefore, the regular update strategy can be adopted to consider the effectiveness 
of the algorithm and the consumption of resources. In addition, when the SPE value of the 
data exceeds the threshold value, it indicates that the data may have a great impact on the 
principal component, and the model update is required to ensure the effectiveness of the 
algorithm. This strategy fully takes into account the problem that the algorithm is greatly 
affected by abnormal data in the initial stage of analysis, and realizes the updating of PCs on 
demand. Compared with the regular updating strategy, our strategy can capture the changes 
of data. 
 

4.3 Implementation of the algorithm 
Combined with the proposed model update strategy and data analysis architecture, we 

implement the data compression and anomaly detection algorithm based on the IPCA. The 
algorithm consists of two parts: one is offline analysis, the other is real-time analysis. The 
flow of the algorithm is shown in Fig. 3. 

Before data analysis, all data needs to be normalized. During initialization, the offline 
analysis system will complete the training of the initial model, which is mainly based on 
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algorithm 1 and the dataset stored in the system. After the initial model training, the offline 
analysis will wait for the model update request of the real-time analysis. Then, the offline 
analysis system retrieves the latest input data and updates the model and parameters after 
receiving the update request. Finally, the latest model will be returned to the real-time 
analysis system. When running for the first time, the real-time analysis system will invoke 
the initial offline model. Then, it performs real-time data compression to calculate SPE 
values according to algorithm 2 and performs abnormal detection of data. At this time, the 
system will store normal data, and when the abnormal data is detected, the system will 
selectively call the offline system according to the preset update strategy and data anomaly 
detection results. 

 
 

Fig. 3. Data compression and anomaly detection algorithm flow 

5. Performance Evaluation 

This section mainly evaluates the performance of the proposed data compression and 
anomaly detection algorithm from two aspects: the anomaly detection capability of the 
algorithm and the loss after data compression and reconstruction. 

Read 
data set

  IPCA

Update 
parameters

Update 
PCs

Output offline 
model

 Input data

Get offline
models

Data 
compress

Calculate 
SPE

Anomaly 
detection

Data 
exception?

Exceed SPE 
threshold?

Timing 
call

Call offline 
analysis

Offline 
analysis

yesyes

no
no Data 

storage

Waiting
new data

Apply

Real-time
analyasis

Normalized 
data

Normalized 
data



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 14, NO. 10, October 2020             3999 

 
Algorithm1：IPCA-Based Offline Data Analysis algorithm 
Initialization：read data from dataset normalized 𝑋𝑋~N（0，1） 
             initialize mean μ, standard deviation σ 
Calculate covariance matrix   

𝑍𝑍 = 1
𝑚𝑚
𝑋𝑋𝑋𝑋𝑇𝑇  

Eigenvalue decomposition Z matrix to obtain matrix P 
              𝑍𝑍 = 𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇  
Get the initial principal component model pcs 
If get update request from real-time analysis 

Get the latest data entry  𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛 and normalized 𝑋𝑋~N（0，1） 
For x in  𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛  

Update mean value and standard deviation  
 𝜇𝜇′ = 1

𝑁𝑁+1
𝜇𝜇 + 1

𝑁𝑁+1
𝑥𝑥  

𝜎𝜎 = 𝑁𝑁
𝑁𝑁+1

∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇′)2 + 1
𝑁𝑁+1

(𝑥𝑥 − 𝜇𝜇′)2𝑁𝑁
𝑖𝑖=1   

Update Covariance matrix 𝑍𝑍′  
Eigenvalue decomposition 𝑍𝑍′ 
Get new principal component model pcs 

 
 

To facilitate the evaluation of our proposed algorithm, we test it on the IntelLab dataset 
[26]. The dataset mainly includes data generated by 54 sensor nodes within two months, with 
an interval of 31 seconds. The data types include temperature, humidity, light, voltage, which 
are widely concerned in intelligent agriculture applications. Based on the Anaconda data 
analysis integration environment and the sklearn machine learning library, our tests evaluate 

Algorithm2：Data anomaly detection algorithm based on SPE value and principal 
component model 
Initialization：  Extract the latest offline principal component model pcs 

Get initial 𝑆𝑆𝑆𝑆𝑆𝑆������ 
Get new input data matrix X ,normalized  𝑋𝑋~N（0，1） 

Data reconstruction  𝑋𝑋𝑟𝑟𝑟𝑟 = 𝑋𝑋 ∗ 𝑃𝑃 ∗ 𝑃𝑃𝑇𝑇  
Calculate SPE matrix  𝑆𝑆𝑆𝑆𝑆𝑆 = ||𝑋𝑋 − 𝑥𝑥𝑟𝑟𝑟𝑟||22 
Calculate 𝑆𝑆𝑆𝑆𝑆𝑆������ value 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆 

For x(t) in X 
Data reconstruction  𝑥𝑥𝑟𝑟𝑟𝑟 = 𝑥𝑥(𝑡𝑡) ∗ 𝑃𝑃 ∗ 𝑃𝑃𝑇𝑇  
Calculate SPE(t) value  𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) = ||𝑥𝑥(𝑡𝑡) − 𝑥𝑥𝑟𝑟𝑟𝑟||22  
Data anomaly determination  

if |𝑆𝑆𝑆𝑆𝑆𝑆(𝑡𝑡) − 𝜇𝜇𝑆𝑆𝑆𝑆𝑆𝑆| > 𝜀𝜀𝑎𝑎 ∗ 𝜎𝜎𝑆𝑆𝑆𝑆𝑆𝑆: 
    Data is abnormal 
      Call offline analysis to update the model immediately 
        X matrix output to offline system 

else   
Data is normal 
Regularly call offline analysis to update the model 

          Data output to offline system to store 
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the performance of the algorithm and the effectiveness of the model update strategy on both 
PC and raspberry PI devices. 
In order to ensure reliability, the amount of data to be analyzed is about 50000.These data are 
from the same sensor node, whose node number is 1. The algorithm selects three dimensions 
of temperature, humidity and illumination in the dataset to conduct data dimensionality 
reduction, and the target dimension is 2. The amount of data read per time set by the IPCA 
algorithm is 20, and the threshold value of SPE value for anomaly detection is set to 3 times 
the standard deviation of the reconstructed data matrix. The data processing results of this 
algorithm are shown in figure Fig. 4. 

 

 
Fig. 4. Data processing results 

 
Fig. 4 shows the initial dataset (left) and the dataset after the dimensionality reduction 

(right), the abnormal data in the dataset are also marked prominently. In addition, in order to 
compare the difference of the data processing results obtained by the IPCA-Based algorithm 
and the PCA-Based algorithm, we test the two algorithms based on the dataset of different 
sensor nodes. The test results show that the average difference between the processing results 
obtained by the two algorithms is less than 2% for both large and small datasets. Therefore, 
the IPCA-Based algorithm has similar compression and reconstruction capabilities as the 
PCA-Based algorithm. 

To test the anomaly detection capabilities of the algorithm, we add some abnormal data to 
the dataset. To avoid the influence of data value and data distribution on the test results, we 
set the data to 0 and distribute data evenly in the dataset. In addition, we mainly use the TPR 
(True Positive Rate) and FPR (False Positive Rate) as evaluation criteria to evaluate the 
anomaly detection capability of the algorithm [27]. Then we test the algorithm on multiple 
data sets and record the results, the average of which is aggregated in Table. 1.  

 
Table 1. Comparison of Anomaly Detection Capabilities of Different Algorithms 

Algorithms TPR PFR 
PCA 1 0.19 
IPCA 1 0.17 

 
Our statistics on outliers do not include the outliers that already exist in the dataset. It can 

be seen from the table that both the IPCA-Based algorithm and the PCA-Based algorithm 
can detect all the abnormal data which are set in the dataset in multiple tests, with a TPR rate 
of 100%. Since the model training and updating process is continuous, when the trend of 
data changes, some data that are obviously normal in the complete dataset may be misjudged 
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as abnormal data. This problem is particularly significant in incremental algorithms. We 
compare the results of batch training and incremental training to roughly determine the part 
of the data. In addition, different dimensions in the data set have different weights when 
performing dimensionality reduction. Some abnormal data with low weight dimensions may 
not cause dramatic changes in the SPE value of the data group where the abnormal data is 
located, which will make our method unable to find some data abnormalities. We confirm 
this part of the data by secondary judgment, which is mainly achieved by calculating the 
ratio between the SPE value of a certain dimension data and the overall SPE value of the 
data. The above uncertain data anomalies are included in the statistics of relevant parameters 
From the PFR statistics in the table, and it can be seen that the PFR rate of the PCA-Based 
algorithm and the IPCA-Based algorithm is similar, and the difference is less than 3%. 

 

 
Fig. 5. Algorithm execution time statistics 

 

 
Fig. 6. Performance comparison of different update strategies 

 
The algorithm we proposed requires the training of the initial model, it is necessary to 

count the execution time for different algorithms to complete the initial model training under 
different data scales. In addition, the time of model updating by different algorithms is also 
counted. In order to facilitate the comparison, we set 1000 pieces of data to be input each 
time for model updating. The statistical results are shown in Fig. 5. 
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Fig. 5 contains the statistical results of the time required for the initial model training and 
model update by different algorithms. As shown in Fig. 5, with the expansion of data scale, 
the training time gap between the IPCA-Based algorithm and the PCA-Based algorithm 
continues to increase. When the size of the dataset is 100,000, the training time of the 
IPCA-Based algorithm is about 8 times the PCA-Based algorithm. Although the initial model 
training time of the IPCA-Based algorithm is much higher than that of the PCA-Based 
algorithm, the time required for the IPCA-Based algorithm to update the PCs is much less 
than the PCA-Based algorithm. In our test, when we input 1000 new data, the IPCA-Based 
algorithm can update the model in 0.03 seconds, which much less than 0.4 seconds of the 
PCA-Based algorithm. These results indicate that the IPCA-Based algorithm has higher 
real-time performance, and it has significant advantages in data processing scenarios where 
model updating is needed frequently. 

 

 
Fig. 7. Communication cost of different update strategies 

 
After analyzing the execution time of the algorithm, we also analyzed the computational 

expense and communication cost of different algorithms under different update strategies. 
We focus on the CPU and memory usage of the algorithm when it runs on raspberry PI 
devices and evaluate the performance of both as a whole. In the evaluation of 
communication cost, considering that the amount of data to be sent by different algorithms 
and strategies in the real-time analysis system is almost the same, and the model update only 
needs to send a small amount of data, for this reason we use the number of data 
transmissions to estimate the communication cost. We mainly test three model update 
strategies. The model update time of the regular strategy is set to 30 minutes, and the data 
size of the initial training is set to 60,000. The update threshold η is set to 1. Fig. 6 shows the 
resource consumption of the PCA-Based algorithm and the IPCA-Based algorithm in model 
updating under different update strategies. Fig. 7 shows the communication cost in model 
updating under different update strategies. 
As shown in Fig. 6, compared with the PCA-Based algorithm, the IPCA-Based algorithm 
reduces the overall resource consumption by about 30%. In the comparison of the resource 
consumption of the update strategy, the hybrid strategy is about 35% less than the real-time 
strategy and 10% more than the regular strategy. The reason is that the hybrid strategy 
combines the regular strategy and the detection of abnormal data. When there are more 
anomalies in the input data, the hybrid strategy is required to update the model more 
frequently, which will lead to an increase in resource consumption. When there is no outlier 
in the input data, the performance of the hybrid strategy is similar to the regular strategy, 
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because the data outlier does not need to be considered. As shown in Fig. 7, the transmission 
frequency of the real-time strategy is the highest, while the regular strategy is the least. The 
transmission frequ- ency of the hybrid strategy is much smaller than the real-time strategy, 
and slightly larger than the regular strategy. In summary, in the scenario of real-time data 
processing, we can tell the hybrid update strategy can significantly reduce the computational 
expense compared to other traditional update strategies, and also has certain advantages in 
communication cost.  

 

 
Fig. 8. Anomaly detection rate under different update strategies 

 
After analyzing the resource consumption of different update strategies, it is also 

necessary to analyze the anomaly detection performance of different update strategies. In this 
section, we constructed multiple data distribution states to complete our test. We use 10,000 
data points for initial model training. We take 1,000 data points from the dataset for input 
each time while we set the total number of samples to 50,000. The test result statistics are 
shown in Fig. 8. 

As shown in Fig. 8, when abnormal data are distributed at the end of the dataset, and the 
overall data scale is large, no matter which update strategy has a relatively high detection 
rate, which is mostly close to 100%. When the abnormal data is distributed in the initial part 
of the dataset, the real-time strategy is less affected, and the TPR value is about 97%. 
However, due to the lack of sufficient data, it is impossible to ensure that all the abnormal 
data are detected if the initial data is small. Compared with the other two algorithms, the 
regular strategy is greatly affected by the data distribution. Especially when there are a lot of 
abnormal data in the initial stage of data analysis, the average TPR is 94%, which is far less 
than the real-time strategy and the hybrid strategy. The hybrid strategy is less affected by 
abnormal data distribution and has higher accuracy. In a variety of data distribution 
conditions, its TPR is higher than 96%, which is also higher than the regular strategy. From 
the previous analysis, it can be seen that compared with the real-time strategy and the regular 
strategy, the hybrid strategy can detect data anomalies with lower resource consumption and 
adapt to different abnormal data distribution. 
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6. Conclusion 

In this paper, we proposed an offline and real-time hybrid data analysis architecture based 
on fog computing. By combining offline and real-time analysis, the architecture enables 
traditional algorithms to perform real-time data processing. Based on this architecture, we 
proposed an IPCA-Based data compression and anomaly detection algorithm, which can 
efficiently handle large-scale data with low memory costs and fewer resource requirements. 
In addition, in order to enable the algorithm to process real-time data, we designed a 
principal component model update strategy. This strategy combines the regular update 
strategy and the data anomaly detection algorithm to update the model on-demand and to 
ensure the accuracy of the algorithm and reduce resource consumption. We implemented the 
algorithm on PC and Raspberry PI devices and tested the algorithm based on the public 
dataset. Relevant test results showed that the proposed model update strategy and data 
analysis algorithm could adapt to a variety of scenarios and obtain higher efficiency and 
lower resource consumption.  
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