• Title/Summary/Keyword: Focused ion beam scanning electron microscopy

Search Result 28, Processing Time 0.036 seconds

Preparation Method of Plan-View Transmission Electron Microscopy Specimen of the Cu Thin-Film Layer on Silicon Substrate Using the Focused Ion Beam with Gas-Assisted Etch

  • Kim, Ji-Soo;Nam, Sang-Yeol;Choi, Young-Hwan;Park, Ju-Cheol
    • Applied Microscopy
    • /
    • v.45 no.4
    • /
    • pp.195-198
    • /
    • 2015
  • Gas-assisted etching (GAE) with focused ion beam (FIB) was applied to prepare plan-view specimens of Cu thin-layer on a silicon substrate for transmission electron microscopy (TEM). GAE using $XeF_2$ gas selectively etched the silicon substrate without volume loss of the Cu thin-layer. The plan-view specimen of the Cu thin film prepared by FIB milling with GAE was observed by scanning electron microscopy and $C_S$-corrected high-resolution TEM to estimate the size and microstructure of the TEM specimen. The GAE with FIB technique overcame various artifacts of conventional FIB milling technique such as bending, shrinking and non-uniform thickness of the TEM specimens. The Cu thin film was uniform in thickness and relatively larger in size despite of the thickness of <200 nm.

Serial Block-Face Imaging by Field Emission Scanning Electron Microscopy (전계방사형 주사전자현미경에 의한 연속블록면 이미징)

  • Kim, Ki-Woo
    • Applied Microscopy
    • /
    • v.41 no.3
    • /
    • pp.147-154
    • /
    • 2011
  • Backscattered electrons (BSE) are generated at the impact of the primary electron beam on the specimen. BSE imaging provides the compositional contrast to resolve chemical features of sectioned block-face. A focused ion beam (FIB) column can be combined with a field emission scanning electron microscope (FESEM) to ensure a dual (or cross)-beam system (FIB-FESEM). Due to the milling of the specimen material by 10 to 100 nm with the gallium ion beam, FIB-FESEM allows the serial block-face (SBF) imaging of plastic-embedded specimens with high z-axis resolution. After contrast inversion, BSE images are similar to transmitted electron images by transmission electron microscopy. As another means of SBF imaging, a specialized ultramirotome has been incorporated into the specimen chamber of FESEM ($3View^{(R)}$). Internal structures of plastic-embedded specimens can be serially revealed and analyzed by $3View^{(R)}$ with a large field of view to facilitate three-dimensional reconstruction. These two SBF approaches by FESEM can be employed to unravel spatial association of (sub)cellular entities for a comprehensive understanding of complex biological systems.

Three Dimensional Reconstruction of Structural Defect of Thin Film Transistor Device by using Dual-Beam Focused Ion Beam and Scanning Electron Microscopy (집속이온빔장치와 주사전자현미경을 이용한 박막 트랜지스터 구조불량의 3차원 해석)

  • Kim, Ji-Soo;Lee, Seok-Ryoul;Lee, Lim-Soo;Kim, Jae-Yeal
    • Applied Microscopy
    • /
    • v.39 no.4
    • /
    • pp.349-354
    • /
    • 2009
  • In this paper we have constructed three dimensional images and examined structural failure on thin film transistor (TFT) liquid crystal display (LCD) by using dual-beam focused ion beam (FIB) and IMOD software. Specimen was sectioned with dual-beam focused ion beam. Series of two dimensional images were obtained by scanning electron microscopy. Three dimensional reconstruction was constructed from them by using IMOD software. The short defect between Gate layer and Data layer was found from the result of three dimensional reconstruction. That phenomena made the function of the gate lost and data signal supplied to the electrode though the Drain continuously. That signal made continuous line defect. The result of the three dimensional reconstruction, serial section, SEM imaging by using the FIB will be the foundation of the next advanced study.

A Study on the Shape of the Pattern Milled Using FIB (집속이온빔 연마에 의한 패턴의 형태에 관한 연구)

  • Jung, Won-Chae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.679-685
    • /
    • 2014
  • For the measurements of surface shape milled using FIB (focused ion beam), the silicon bulk, $Si_3N_4/Si$, and Al/Si samples are used and observed the shapes milled from different sputtering rates, incident angles of $Ga^+$ ions bombardment, beam current, and target material. These conditions also can be influenced the sputtering rate, raster image, and milled shape. The fundamental ion-solid interactions of FIB milling are discussed and explained using TRIM programs (SRIM, TC, and T-dyn). The damaged layers caused by bombarding of $Ga^+$ ions were observed on the surface of target materials. The simulated results were shown a little bit deviation with the experimental data due to relatively small sputtering rate on the sample surface. The simulation results showed about 10.6% tolerance from the measured data at 200 pA. On the other hand, the improved analytical model of damaged layer was matched well with experimental XTEM (cross-sectional transmission electron microscopy) data.

Use of Modern Non­destructive Techniques in High Temperature Degradation of Material and Coatings

  • Lee, C.K.;Sohn, Y.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.29-39
    • /
    • 2003
  • The durability and reliability of thermal barrier coatings (TBCs) play an important role in the service reliability, availability and maintainability (RAM) of hot­section components in advanced turbine engines for aero and utility applications. Photostimulated luminescence spectroscopy (PSLS) and electrochemical impedance spectroscopy (EIS) are being concurrently developed as complimentary non­destructive evaluation (NDE) techniques for quality control and life­remain assessment of TBCs. This paper overviews the governing principles and applications of the luminescence and the impedance examined in the light of residual stress, phase constituents and resistance (or capacitance) in TBC constituents including the thermally grown oxide (TGO) scale. Results from NDE by PSLS and EIS are discussed and related to the microstructural development during high temperature thermal cycling, examined by using a variety of microscopic techniques including focused ion beam (FIB) in­situ lift­out (INLO), transmission and scanning transmission electron microscopy (TEM and STEM).

  • PDF

Nano-Resolution Connectomics Using Large-Volume Electron Microscopy

  • Kim, Gyu Hyun;Gim, Ja Won;Lee, Kea Joo
    • Applied Microscopy
    • /
    • v.46 no.4
    • /
    • pp.171-175
    • /
    • 2016
  • A distinctive neuronal network in the brain is believed to make us unique individuals. Electron microscopy is a valuable tool for examining ultrastructural characteristics of neurons, synapses, and subcellular organelles. A recent technological breakthrough in volume electron microscopy allows large-scale circuit reconstruction of the nervous system with unprecedented detail. Serial-section electron microscopy-previously the domain of specialists-became automated with the advent of innovative systems such as the focused ion beam and serial block-face scanning electron microscopes and the automated tape-collecting ultramicrotome. Further advances in microscopic design and instrumentation are also available, which allow the reconstruction of unprecedentedly large volumes of brain tissue at high speed. The recent introduction of correlative light and electron microscopy will help to identify specific neural circuits associated with behavioral characteristics and revolutionize our understanding of how the brain works.

The LaserFIB: new application opportunities combining a high-performance FIB-SEM with femtosecond laser processing in an integrated second chamber

  • Ben Tordoff;Cheryl Hartfield;Andrew J. Holwell;Stephan Hiller;Marcus Kaestner;Stephen Kelly;Jaehan Lee;Sascha Muller;Fabian Perez-Willard;Tobias Volkenandt;Robin White;Thomas Rodgers
    • Applied Microscopy
    • /
    • v.50
    • /
    • pp.24.1-24.11
    • /
    • 2020
  • The development of the femtosecond laser (fs laser) with its ability to provide extremely rapid athermal ablation of materials has initiated a renaissance in materials science. Sample milling rates for the fs laser are orders of magnitude greater than that of traditional focused ion beam (FIB) sources currently used. In combination with minimal surface post-processing requirements, this technology is proving to be a game changer for materials research. The development of a femtosecond laser attached to a focused ion beam scanning electron microscope (LaserFIB) enables numerous new capabilities, including access to deeply buried structures as well as the production of extremely large trenches, cross sections, pillars and TEM H-bars, all while preserving microstructure and avoiding or reducing FIB polishing. Several high impact applications are now possible due to this technology in the fields of crystallography, electronics, mechanical engineering, battery research and materials sample preparation. This review article summarizes the current opportunities for this new technology focusing on the materials science megatrends of engineering materials, energy materials and electronics.

Direct Synthesis of Width-tailored Graphene Nanoribbon on Insulating Substrate

  • Song, U-Seok;Kim, Su-Yeon;Kim, Yu-Seok;Kim, Seong-Hwan;Lee, Su-Il;Jeon, Cheol-Ho;Park, Jong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.564-564
    • /
    • 2012
  • Graphene has been emerged as a fascinating material for future nanoelectronic applications due to its extraordinally electronic properties. However, their zero-bandgap semimetallic nature is a major problem for applications in high performance field-effect transistors (FETs). Graphene nanoribbons (GNRs) with narrow widths (${\geq}10nm$) exhibit semiconducting behavior, which can be used to overcome this problem. In previous reports, GNRs were produced by several approaches, such as electron beam lithography patterning, chemically derived GNRs, longitudinal unzipping of carbon nanotubes, and inorganic nanowire template. Using these methods, however, the width distribution of GNRs was a quiet broad and substantial defects were inevitably occurred. Here, we report a novel approach for fabricating width-tailored GNRs by focused ion beam-assisted chemical vapor deposition (FIB-CVD). Width-tailored phenanthrene ($C_{14}H_{10}$) templates for direct growth of GNRs were prepared on $SiO_2$/Si substrate by FIB-CVD. The GNRs on the templates were synthesized at $900-1,050^{\circ}C$ with introducing $CH_4$ $(20sccm)/H_2$ (10 sccm) mixture gas for 10-300 min. Structural characterizations of the GNRs were carried out using Raman spectroscopy, scanning electron microscopy, and atomic force microscopy.

  • PDF

A Site Specific Characterization Technique and Its Application

  • Kamino, T.;Yaguchi, T.;Ueki, Y.;Ohnish, T.;Umemura, K.;Asayama, K.
    • 한국전자현미경학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.18-22
    • /
    • 2001
  • A technique to characterize specific site of materials using a combination of a dedicated focused ion beam system(FIB), and Intermediate-voltage scanning transmission electron microscope(STEM) or transmission electron microscope(TEM) equipped with a scanning electron microscope(SEM) unit has been developed. The FIB system is used for preparation of electron transparent thin samples, while STEM or TEM is used for localization of a specific site to be milled in the FIB system. An FIB-STEM(TEM) compatible sample holder has been developed to facilitate thin sample preparation with high positional accuracy Positional accuracy of $0.1{\mu}m$ or better can be achieved by the technique. In addition, an FIB micro-sampling technique has been developed to extract a small sample directly from a bulk sample in a FIB system These newly developed techniques were applied for the analysis of specific failure in Si devices and also for characterization of a specific precipitate In a metal sample.

  • PDF

Fabrication of Hydrophobic Surface by Controlling Micro/Nano Structures Using Ion Beam Method (이온빔을 이용한 표면 미세구조 제어를 통한 발수 표면 제조)

  • Kim, Dong-Hyeon;Lee, Dong-Hoon
    • Corrosion Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.123-128
    • /
    • 2018
  • The fabrication of a controlled surface is of great interest because it can be applied to various engineering facilities due to the various properties of the surface, such as self-cleaning, anti-bio-fouling, anti-icing, anti-corrosion, and anti-sticking. Controlled surfaces with micro/nano structures were fabricated using an ion beam focused onto a polypropylene (PP) surface with a fluoridation process. We developed a facile method of fabricating hydrophobic surfaces through ion beam treatment with argon and oxygen ions. The fabrication of low surface energy materials can replace the current expensive and complex manufacturing process. The contact angles (CAs) of the sample surface were $106^{\circ}$ and $108^{\circ}$ degrees using argon and oxygen ions, respectively. X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FT-IR) spectroscopy were used to determine the chemical composition of the surface. The morphology change of the surfaces was observed by scanning electron microscopy (SEM). The change of the surface morphology using the ion beam was shown to be very effective and provide enhanced optical properties. It is therefore expected that the prepared surface with wear and corrosion resistance might have a considerable potential in large scale industrial applications.