Browse > Article
http://dx.doi.org/10.4313/JKEM.2014.27.11.679

A Study on the Shape of the Pattern Milled Using FIB  

Jung, Won-Chae (Department of Electronic Engineering, Kyonggi University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.27, no.11, 2014 , pp. 679-685 More about this Journal
Abstract
For the measurements of surface shape milled using FIB (focused ion beam), the silicon bulk, $Si_3N_4/Si$, and Al/Si samples are used and observed the shapes milled from different sputtering rates, incident angles of $Ga^+$ ions bombardment, beam current, and target material. These conditions also can be influenced the sputtering rate, raster image, and milled shape. The fundamental ion-solid interactions of FIB milling are discussed and explained using TRIM programs (SRIM, TC, and T-dyn). The damaged layers caused by bombarding of $Ga^+$ ions were observed on the surface of target materials. The simulated results were shown a little bit deviation with the experimental data due to relatively small sputtering rate on the sample surface. The simulation results showed about 10.6% tolerance from the measured data at 200 pA. On the other hand, the improved analytical model of damaged layer was matched well with experimental XTEM (cross-sectional transmission electron microscopy) data.
Keywords
Focused ion beam; Sputtering; Scanning electron microscopy; Cross-sectional transmission electron microscopy; Computer simulation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
2 G. Wilkening and L. Koenders, Nanoscale Calibration Standards and Methods (Wiley-VCH Verlag GmbH & Co., KGaA, 2005) p. 311.
3 A. A. Tseng, Nanofabrication Fundamentals and Applications (World Scientific, New Jersey, 2008) p. 544.
4 J. P. Biersack, S. Berg, and C. Nender, Nucl. Instrum. Methods B, 59, 21 (1991).
5 W. Moller, W. Eckstein, and J. P. Biersack, Comp. Phys. Commun., 51, 355, (1998).
6 C. Lehrer, L. Frey, M. Mizutani, M. Takai, and H. Ryssel, Ion Implantation Technology Conference (IEEE, Alpbach, 2000) p. 695.
7 W. Moller and W. Eckstein, Nucl. Insrum. Methods B, 2, 814, (1984).   DOI
8 B. I. Prenitzer, C. A. Urbanik-Shannon, L. A. Giannuzzi, S. R. Brown, R. B. Irwin, T. L. Shofner, and F. A. Stevie, Microscopy and Microanalysis, 9, 216 (2003). DOI:10.1017/S1431922760030034   DOI
9 H. Gnaser, A. Brodyanski, and B. Reuscher, Surf. Interface Anal., 40, 1415 (2008).   DOI
10 K. S. Ko, W. C. Jung, J. Chung, and L. Rabenberg, Microsc Microanal, 10, 1170 (2004).   DOI
11 Z. Wang, T. Kato, T. Hirayama, N. Kato, K. Sasaki, and H. Saka, Appl. Surf. Sci., 241, 80 (2005).   DOI
12 J. Takamatsu, T. Koike, Y. Kato, H. Sunaoshi, and K. Hattori, Jpn. J. Appl. Phys., 35, 6415 (1996).   DOI
13 C. J. Anthony, G. Torricelli, P. D. Prewett, D. Cheneler, C. Binns, and A. Sabouri, J. of Micromech. and Microeng., 21, 1 (2011).
14 J. Orloff, M. Utlau, and L. Swanson, High Resolution Focused Ion Beams (Kluwer Academic Pub., New York, 2003) p. 205.
15 Y. Liao, Practical Electron Microscopy and Data Base, 2454 (2007).
16 J. P. McCaffrey, M. W. Phaneuf, and L. D. Madsen, Ultramicroscopy, 87, 97 (2001).   DOI
17 W. Eckstein, Computer Simulation of Ion-Solid Interactions (Springer, Berlin 1991).