• Title/Summary/Keyword: Focused ion beam

Search Result 278, Processing Time 0.033 seconds

Development of Nano Stage for Ultra High Vacuum (진공용 나노스테이지 개발)

  • 홍원표;강은구;이석우;최헌종
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.472-477
    • /
    • 2004
  • Miniaturization is the central theme in modern fabrication technology. Many of the components used in modem products are becoming smaller and smaller. The direct write FIB technology has several advantages over contemporary micromachining technology, including better feature resolution with low lateral scattering and capability of mastless fabrication. Therefore, the application of focused ion beam(FIB) technology in micro fabrication has become increasingly popular. In recent model of FIB, however the feeding system has been a very coarse resolution of about a few ${\mu}{\textrm}{m}$. It is not unsuitable to the sputtering and the deposition to make the high-precision structure in micro or macro scale. Our research is the development of nano stage of 200mm strokes and l0nm resolutions. Also, this stage should be effectively operating in ultra high vacuum of about 1$\times$10$^{-5}$ pa. This paper presents the concept of nano stages and the discussion of the material treatment for ultra tush vacuum.

  • PDF

The analysis of sputtering characteristics using Focused Ion Beam according to Focal Length (FIB 가공 공정 특성 분석)

  • Choi B.Y.;Choi W.C.;Kang E.G.;Hong W.P;Lee S.W.;Choi H.Z.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1518-1521
    • /
    • 2005
  • The application of focused ion beam (FIB) technology in micro/nano machining has become increasingly popular. Its usage in micro/nano machining has advantages over contemporary photolithography or other micro/nano machining technologies such as small feature resolution, the ability to process without masks and being accommodating for a variety of materials and geometries This paper focus to apply the sputtering technology accumulated by experiments to 3d structure fabrication with high resolution. Therefore some verifications and discussions of the characteristics of FIB sputtering results according to focal length were described in this paper. And we suggested the definition of rectangular pattern profile and made the verifications of sputtering results based on definition of it.

  • PDF

Fabrication of nanostencil using FIB milling for nanopatterning (FIB 밀링을 이용한 나노스텐실 제작 및 나노패터닝)

  • Chung Sung-Ill;Oh Hyeon-Seok;Kim Gyu-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.56-60
    • /
    • 2006
  • A high-resolution shadow mask, or called a nanostencil was fabricated for high resolution lithography. This high-resolution shadowmask was fabricated by a combination or MEMS processes and focused ion beam (FIB) milling. 500 nm thick and $2{\times}2mm$ large membranes wore made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. A subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to the high resolution of the FIB milling process, nanoscale apertures down to 70 nm could be made into the membrane. By local deposition through the apertures of nanostencil, nanoscale patterns down to 70 nm could be achieved.

Nanostencil fabrication using FIB milling (FIB 밀링을 이용한 나노스텐실 제작)

  • 김규만;정성일;오현석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.871-874
    • /
    • 2004
  • Fabrication of a high-resolution shadow mask, or called nanostencil, is presented. This high-resolution shadowmask is fabricated by a combination of MEMS processes and focused ion beam (FIB) milling. 500 nm thick and 2x2 mm large membranes are made on a silicon wafer by micro-fabrication processes of LPCVD, photolithography, ICP etching and bulk silicon etching. Subsequent FIB milling enabled local membrane thinning and aperture making into the thinned silicon nitride membrane. Due to high resolution of FIB milling process, nanoscale apertures down to 70 nm could be made into the membrane.

  • PDF

A Failure Analysis of SLS Polysilicon TFT Devices for Enhanced Performances (SLS 다결정 실리콘 TFT 소자의 불량분석에 관한 연구)

  • 오재영;김동환;박정호;박원규
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.11
    • /
    • pp.969-975
    • /
    • 2002
  • Thin film transistors(TFT) were made based on the polycrystalline Si (poly-Si) crystallized by sequential lateral solidification(SLS) method. The electrical characteristics of the devices were analyzed. n-type TFTs did not show a superior characteristics compared to p-type TFTs. We analyzed the causes of the failure by focused ion beam(FIB) analysis and automatic spreading resistance(ASR) measurement, to study the structural integrity and the doping distribution, respectively. FIB showed no structural problems but it revealed a non-intermixed layer in the contact holes between the polysilicon and the aluminum electrode. ASR analyses on poly-Si layer with various doping concentrations and activation temperatures showed that the inadequately doped areas were partially responsible for the inferior behavior of the whole device.

Development of Focused Ion Beam Column Using Ga Source (갈륨 소스를 이용한 집속이온빔 컬럼 개발)

  • Gim, Tzang-Jo;Lee, Jae-Seung;Choi, Yoon;Choi, Eun-Ha;Park, Chul-Woo;Kim, Jong-Kuk;Kim, Young-Gweon;Um, Chang-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.185-189
    • /
    • 2009
  • Focused ion beam system was designed, which includes LMIS, electrostatic lens and high voltage power supply. Control program is updated for high speed image processing. The details of vibration-free vacuum system and other important electrical parts were trouble-shooted for appropriately controlling high acceleration voltages.

Electrical Characterization of Electronic Materials Using FIB-assisted Nanomanipulators

  • Roh, Jae-Hong;You, Yil-Hwan;Ahn, Jae-Pyeong;Hwang, Jinha
    • Applied Microscopy
    • /
    • v.42 no.4
    • /
    • pp.223-227
    • /
    • 2012
  • Focused Ion Beam (FIB) systems have incorporated versatile nanomanipulators with inherent sophisticated machining capability to characterize the electrical properties of highly miniature components of electronic devices. Carbon fibers were chosen as a model system to test the applicability of nanomanipulators to microscale electronic materials, with special emphasis on the direct current current-voltage characterizations in terms of electrode configuration. The presence of contact resistance affects the electrical characterization. This resistance originates from either i) the so-called "spreading resistance" due to the geometrical constriction near the electrode - material interface or ii) resistive surface layers. An appropriate electrode strategy is proposed herein for the use of FIB-based manipulators.

Silicon Nano Patterning Using Focused ion Beam: Simulation and Fabrication (집속이온빔을 이용한 실리콘 나노 패터닝: 시뮬레이션과 가공)

  • Han J.;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.489-490
    • /
    • 2006
  • To establish fabrication techniques for nano structure understanding of focused ion beam (FIB) milling process is required. In this study the mathematical model containing the factors related to FIB milling is developed to acquire the optimal fabrication condition. Then, the model is verified by comparison with various nano pattern fabricated in actual FIB system. Consequently, it is demonstrated that the nano patterns with the smallest pitch can be fabricated using developed FIB milling model.

  • PDF

Fabrication of Electrostatically Actuated Nano Tweezers Using FIB(Focused Ion Beam) (집속이온빔 장치를 이용한 정전기 구동 나노트위저의 제작)

  • Chang Ji-Young;Kim Jong-Baeg;Min B.K.;Lee S.J.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.495-496
    • /
    • 2006
  • Electrostatically actuated nanoscale tweezers are fabricated on micro processed electrodes using FIB-CVD. Heavily doped electrode works as interconnection platform for controlling nanoscale devices. Short bent pillars are deposited to control the gap distance of main tweezers fabricated on bent ones. Two types of tweezers which have different gap distances are fabricated and tweezing motion was successfully demonstrated. The threshold voltages at snap-down of the pillars are dependent on the initial gap distance of the unactuated pillars, and the measured values were 93V for 3.6um and 30V for 2.2um. The dimension of nano tweezers and initial gap distances are controllable as demonstrated and we expect more complicated 3-dimensional shapes are also possible.

  • PDF

Non-contact mode measurement of high aspect ratio tip (High aspect ratio 팁의 비접촉모드에서의 측정)

  • Shin Y.H.;Han C.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.463-464
    • /
    • 2006
  • This paper present experimental results by non-contact mode Atomic Force Microscopy using high aspect ratio tips (HAR-T). We fabricated the carbon nanotube tip based on dielectrophoresis and the carbon nano probe by focused ion beam after dielectrophoretic assembling. In this paper, we measure AAO sample and trench structure to estimate HAR-T's performance and compared with conventional Si tip. We confirmed that results of HAR-T's performance in non contact mode was very superior than conventional tip.

  • PDF