• 제목/요약/키워드: Focused ion beam

검색결과 278건 처리시간 0.025초

새로운 티타늅 실리사이드 형성공정과 STI를 이용한 서브 0,1$\mu\textrm{m}$ ULSI급 소자의 특성연구 (A Study on sub 0.1$\mu\textrm{m}$ ULSI Device Quality Using Novel Titanium Silicide Formation Process & STI)

  • 엄금용;오환술
    • 대한전자공학회논문지SD
    • /
    • 제39권5호
    • /
    • pp.1-7
    • /
    • 2002
  • Deep sub-micron bulk CMOS circuits require gate electrode materials such as metal silicide and titanium silicide for gate oxides. Many authors have conducted research to improve the quality of the sub-micron gate oxide. However, few have reported on the electrical quality and reliability of an ultra-thin gate. In this paper, we will recommend a novel shallow trench isolation structure and a two-step TiS $i_2$ formation process to improve the corner metal oxide semiconductor field-effect transistor (MOSFET) for sub-0.1${\mu}{\textrm}{m}$ VLSI devices. Differently from using normal LOCOS technology, deep sub-micron CMOS devices using the novel shallow trench isolation (STI) technology have unique "inverse narrow-channel effects" when the channel width of the device is scaled down. The titanium silicide process has problems because fluorine contamination caused by the gate sidewall etching inhibits the silicide reaction and accelerates agglomeration. To resolve these Problems, we developed a novel two-step deposited silicide process. The key point of this process is the deposition and subsequent removal of titanium before the titanium silicide process. It was found by using focused ion beam transmission electron microscopy that the STI structure improved the narrow channel effect and reduced the junction leakage current and threshold voltage at the edge of the channel. In terms of transistor characteristics, we also obtained a low gate voltage variation and a low trap density, saturation current, some more to be large transconductance at the channel for sub-0.1${\mu}{\textrm}{m}$ VLSI devices.

나노스케일 3 차원 프린팅 시스템을 위한 정렬 알고리즘 (Alignment Algorithm for Nano-scale Three-dimensional Printing System)

  • 장기환;이현택;김충수;추원식;안성훈
    • 한국정밀공학회지
    • /
    • 제31권12호
    • /
    • pp.1101-1106
    • /
    • 2014
  • Hybrid manufacturing technology has been advanced to overcome limitations due to traditional fabrication methods. To fabricate a micro/nano-scale structure, various manufacturing technologies such as lithography and etching were attempted. Since these manufacturing processes are limited by their materials, temperature and features, it is necessary to develop a new three-dimensional (3D) printing method. A novel nano-scale 3D printing system was developed consisting of the Nano-Particle Deposition System (NPDS) and the Focused Ion Beam (FIB) to overcome these limitations. By repeating deposition and machining processes, it was possible to fabricate micro/nano-scale 3D structures with various metals and ceramics. Since each process works in different chambers, a transfer process is required. In this research, nanoscale 3D printing system was briefly explained and an alignment algorithm for nano-scale 3D printing system was developed. Implementing the algorithm leads to an accepted error margin of 0.5% by compensating error in rotational, horizontal, and vertical axes.

긴기저선을 가진 단일층 고온초전도 SQUID 2차미분기 (Long-baseline single-layer 2nd-order $high-T_c$ SQUID gradiometer)

  • 이순걸;강찬석;김인선;김상재
    • Progress in Superconductivity
    • /
    • 제7권1호
    • /
    • pp.6-10
    • /
    • 2005
  • We have studied feasibility of single-layer second-order $high-T_c$ SQUID gradiometers in magnetocardiography. We have measured human cardiomagnetic signals using a short-baseline (5.8 mm) single-layer second-order YBCO gradiometer in partially shielded environments. The gradiometer has an overall size of $17.6\;mm{\times}6\;mm$ and contains three parallel-connected pickup coils which are directly coupled to a step-edge junction SQUID. The gradiometer showed an unshielded gradient noise of $0.84\;pT/cm^2/Hz^{1/2}$ at 1 Hz, which corresponds to an equivalent field noise of $280\;fT/Hz^{1/2}$. The balancing factor was $10^3$. Based on the same design rules as the short-baseline devices, we have studied fabrication of 30 mm-long baseline gradiometers. The devices had an overall size of $70.2\;mm{\times}10.6\;mm$ with each pickup coil of $10\;mm{\times}10\;mm$ in outer size. As Josephson elements we made two types of submicron bridges, which are variable thickness bridge (VTB) and constant thickness bridge (CTB), from $3\;{\mu}m-wide$ and 300 nm-thick YBCO lines with a thin layer of Au on top by using a focused ion beam (FIB) patterning method. VTB was 300 nm wide, 200 nm thick, 30 nm long with Au removed and CTB 100 nm wide and 30 nm long. In temperature-dependent critical currents, $I_c(T)$, VTB showed an nonmetallic barrier-type behavior and CTB an SNS behavior. We believe that those characteristics are ascribed to naturally formed grain boundaries crossing the bridges.

  • PDF

수직성장된 탄소나노튜브의 선택적 패터닝 (Laser Patterning of Vertically Grown Carbon Nanotubes)

  • 장원석
    • 대한기계학회논문집B
    • /
    • 제36권12호
    • /
    • pp.1171-1176
    • /
    • 2012
  • 실리콘 기판 위에 플라즈마 기상층착법을 이용하여 합성된 탄소나노튜브를 화학적인 방법이나 전자빔 혹은 이온빔과 같은 진공 챔버 내에서의 공정없이 펨토초레이저를 이용하여 선택적으로 패터닝 하는 방법을 구현하였다. 플라즈마 기상층착법으로 합성된 탄소나노튜브는 수직성장이 가능하며 탄소나노튜브 간의 간격을 조절하여 성장이 가능하다. 이러한 장점으로 전계방출소자, 바이오센서 등의 응용을 위하여 이용되는 합성 방법이다. 이러한 응용을 위하여 선택적으로 나노튜브를 제거하고 탄소나노튜브 끝의 촉매금속을 제거하는 것이 응용의 효율을 높이는데 매우 중요하다. 본 연구에서는 탄소나노튜브의 전기적, 구조적 특성에 영향을 줄 수 있는 화학적인 방법을 사용하지 않고 펨토초레이저를 사용하여 패터닝과 촉매금속을 제거하는 방법을 구현하였다.

X-선 회절 패턴 측정과 투과 전자 현미경을 이용한 구리 나노분말의 수소 환원 처리 시 발생하는 미세조직 변화 및 치밀화 시편의 물성 분석 (Analysis of the Change in Microstructures of Nano Copper Powders During the Hydrogen Reduction using X-ray Diffraction Patterns and Transmission Electron Microscope, and the Mechanical Property of Compacted Powders)

  • 안동현;이동준;김우열;박이주;김형섭
    • 한국분말재료학회지
    • /
    • 제21권3호
    • /
    • pp.207-214
    • /
    • 2014
  • In this study, nano-scale copper powders were reduction treated in a hydrogen atmosphere at the relatively high temperature of $350^{\circ}C$ in order to eliminate surface oxide layers, which are the main obstacles for fabricating a nano/ultrafine grained bulk parts from the nano-scale powders. The changes in composition and microstructure before and after the hydrogen reduction treatment were evaluated by analyzing X-ray diffraction (XRD) line profile patterns using the convolutional multiple whole profile (CMWP) procedure. In order to confirm the result from the XRD line profile analysis, transmitted electron microscope observations were performed on the specimen of the hydrogen reduction treated powders fabricated using a focused ion beam process. A quasi-statically compacted specimen from the nano-scale powders was produced and Vickers micro-hardness was measured to verify the potential of the powders as the basis for a bulk nano/ultrafine grained material. Although the bonding between particles and the growth in size of the particles occurred, crystallites retained their nano-scale size evaluated using the XRD results. The hardness results demonstrate the usefulness of the powders for a nano/ultrafine grained material, once a good consolidation of powders is achieved.

CIGS 태양전지용 Cd-Free 버퍼층 제조 (Preparation of Cadmium-free Buffer Layers for CIGS Solar Cells)

  • 문지현;김지현;유인상;박상준
    • 공업화학
    • /
    • 제25권6호
    • /
    • pp.577-580
    • /
    • 2014
  • CIGS 태양 전지용 cadmium (Cd)-free $In(OH)_xS_y$ 버퍼층을 화학적 용액성장법을 이용해서 형성시켰고 최적 반응시간을 파악하였다. 투과율 측정과 함께 이온집적빔 시스템으로 직접 박막을 관찰해서 박막성장 조건을 최적화 하였으며 X선 회절분석법과 X선 광전자 분광법, 주사현미경을 이용해서 박막의 특성을 파악하였다. 그 결과 $In(OH)_xS_y$ 버퍼층의 증착을 위한 최적 반응 시간은 온도 섭씨 $70^{\circ}$의 조건에서 20 min임을 확인하였으며, 이때의 버퍼층의 두께는 57 nm 가량이었고 밴드갭 에너지는 2.7 eV를 나타내었다. 아울러 molybdenum (Mo)층과 CIGS층 위에서 $In(OH)_xS_y$ 버퍼층을 형성시키는 경우에 XPS 피크의 차이는 볼 수 없었다.

Influence of gas mixture ratio on the secondary electron emission coefficient (${\gamma}$) of MgO single crystals and MgO protective layer in surface discharge AC-PDPs

  • Lim, J.Y.;Jung, J.M.;Kim, Y.G.;Ahn, J.C.;Cho, T.S.;Cho, D.S.;Kim, J.G.;Kim, T.Y.;Kim, S.S.;Jung, M.W.;Choi, S.H.;Ko, J.J.;Kim, D.I.;Lee, C.W.;Seo, Y.;Cho, G.S.;Kang, S.O.;Choi, E.H.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2000년도 제1회 학술대회 논문집
    • /
    • pp.117-118
    • /
    • 2000
  • The secondary electron emission coefficient ${\gamma}$ of MgO single crystals according to the gas mixture ratio of Xe to Ne have been investigated by ${\gamma}-focused$ ion beam system. It is found that the MgO single crystals of (111) crystallinity has the highest ${\gamma}$ from 0.09(0.03) up to 0.16(0.04), while from 0.07(0.02) to 0.15(0.03) for (200) and from 0.06(0.01) to 0.13(0.02) for (220) crystallinity for operating Ne (Xe) ions ranging from 50eV to 200eV throughout this experiment. And it is found that the ${\gamma}$ ranged from 0.03 up to 0.06 for Ne-Xe mixtures are much smaller than those of 0.09 up to 0.16 for pure Ne ions under accelerating voltage ranged from 50V to 200V.

  • PDF

Newly Developed BioDegradable Mg Alloys and Its Biomedical Applications

  • 석현광;김유찬;;차필령;조성윤;양석조
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2012년도 춘계학술발표대회
    • /
    • pp.55.2-55.2
    • /
    • 2012
  • Intensive theoretical and experimental studies have been carried out at Korean Institute of Science and Technology (KIST) on controlling the bio absorbing rate of the Mg alloys with high mechanical strength through tailoring of electrochemical potential. Key technology for retarding the corrosion of the Mg alloys is to equalize the corrosion potentials of the constituent phases in the alloys, which prevented the formation of Galvanic circuit between the constituent phases resulting in remarkable reduction of corrosion rate. By thermodynamic consideration, the possible phases of a given alloy system were identified and their work functions, which are related to their corrosion potentials, were calculated by the first principle calculation. The designed alloys, of which the constituent phases have similar work function, were fabricated by clean melting and extrusion system. The newly developed Mg alloys named as KISTUI-MG showed much lower corrosion rate as well as higher strength than previously developed Mg alloys. Biocompatibility and feasibility of the Mg alloys as orthopedic implant materials were evaluated by in vitro cell viability test, in vitro degradation test of mechanical strength during bio-corrosion, in vivo implantation and continuous observation of the implant during in vivo absorbing procedures. Moreover, the cells attached on the Mg alloys was observed using cryo-FIB (focused ion beam) system without the distortion of cell morphology and its organ through the removal of drying steps essential for the preparation of normal SEM/TEM samples. Our Mg alloys showed excellent biocompatibility satisfying the regulations required for biomedical application without evident hydrogen evolution when it implanted into the muscle, inter spine disk, as well as condyle bone of rat and well contact interface with bone tissue when it was implanted into rat condyle.

  • PDF

SCANNING ELECTRON MICROSCOPY ANALYSIS OF FUEL/MATRIX INTERACTION LAYERS IN HIGHLY-IRRADIATED U-Mo DISPERSION FUEL PLATES WITH Al AND Al-Si ALLOY MATRICES

  • Keiser, Dennis D. Jr.;Jue, Jan-Fong;Miller, Brandon D.;Gan, Jian;Robinson, Adam B.;Medvedev, Pavel;Madden, James;Wachs, Dan;Meyer, Mitch
    • Nuclear Engineering and Technology
    • /
    • 제46권2호
    • /
    • pp.147-158
    • /
    • 2014
  • In order to investigate how the microstructure of fuel/matrix-interaction (FMI) layers change during irradiation, different U-7Mo dispersion fuel plates have been irradiated to high fission density and then characterized using scanning electron microscopy (SEM). Specifially, samples from irradiated U-7Mo dispersion fuel elements with pure Al, Al-2Si and AA4043 (~4.5 wt.%Si) matrices were SEM characterized using polished samples and samples that were prepared with a focused ion beam (FIB). Features not observable for the polished samples could be captured in SEM images taken of the FIB samples. For the Al matrix sample, a relatively large FMI layer develops, with enrichment of Xe at the FMI layer/Al matrix interface and evidence of debonding. Overall, a significant penetration of Si from the FMI layer into the U-7Mo fuel was observed for samples with Si in the Al matrix, which resulted in a change of the size (larger) and shape (round) of the fission gas bubbles. Additionally, solid fission product phases were observed to nucleate and grow within these bubbles. These changes in the localized regions of the microstructure of the U-7Mo may contribute to changes observed in the macroscopic swelling of fuel plates with Al-Si matrices.

알루미늄 합금과 아연도금강판의 이종 겹치기 마찰교반접합에서 기계적성질에 미치는 Tool Geometry의 영향 (The Effect of Tool Geometry on the Mechanical Properties in a Friction Stir Welded Lap Joint between an Al Alloy and Zn-coated Steel)

  • 김남규;김병철;정병훈;송상우;;강정윤
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.533-542
    • /
    • 2010
  • The specific motivation for joining an Al alloy and Zn-coated steel arises from the need to save fuel consumption by weight reduction and to enhance the durability of vehicle structures in the automobile industry. In this study, the lap joining A6K31 Al alloy (top) and SGARC340 Zn-coated steel (bottom) sheets with a thickness of 1.0 mm and 0.8 mm, respectively, was carried out using the friction stir weld (FSW) technique. The probe of a tool did not contact the surface of the lower Zn-coated steel sheet. The friction stir welding was carried out at rotation speeds of 1500 rpm and travel speeds of 80~200 mm/min. The effects of tool geometry and welding speed on the mechanical properties and the structure of a joint were investigated. The tensile properties for the joints welded with a larger tool were better than those for the joints done with a smaller tool. A good correlation between the tensile load and area of the welded region were observed. The bond strength using a larger tool (M4 and M3) decreased with an increase in welding speed. Most fractures occurred along the interface between the Zn-coated steel and the Al alloy. However, in certain conditions with a lower welding speed, fractures occurred at the A6K31 Al alloy.