• Title/Summary/Keyword: Focal brain ischemia/reperfusion

Search Result 21, Processing Time 0.026 seconds

Neuroprotective effects of consuming bovine colostrum after focal brain ischemia/reperfusion injury in rat model

  • Choi, Han-Sung;Ko, Young-Gwan;Lee, Jong-Seok;Kwon, Oh-Young;Kim, Sun-Kyu;Cheong, Chul;Jang, Ki-Hyo;Kang, Soon-Ah
    • Nutrition Research and Practice
    • /
    • v.4 no.3
    • /
    • pp.196-202
    • /
    • 2010
  • To investigate the neuroprotective effects of bovine colostrums (BC), we evaluate the ability of consuming BC after focal brain ischemia/reperfusion injury rat model to reduce serum cytokine levels and infarct volume, and improve neurological outcome. Sprague-Dawley rats were randomly divided into 4 groups; one sham operation and three experimental groups. In the experimental groups, MCA occlusion (2 h) and subsequent reperfusion (O/R) were induced with regional cerebral blood flow monitoring. One hour after MCAO/R and once daily during the experiment, the experimental group received BC while the other groups received 0.9% saline or low fat milk (LFM) orally. Seven days later, serum pro-inflammatory cytokine (IL-$1{\beta}$, IL-6, and TNF-${\alpha}$) and anti-inflammatory cytokine (IL-10) levels were assessed. Also, the infarct volume was assessed by using a computerized image analysis system. Behavioral function was also assessed using a modified neurologic severity score and corner turn test during the experiment. Rats receiving BC after focal brain I/R showed a significant reduction (-26%/-22%) in infarct volume compared to LFM/saline rats, respectively (P < 0.05). Serum IL-$1{\beta}$, IL-6, and TNF-${\alpha}$ levels were decreased significantly in rats receiving BC compared to LFM/saline rats (P < 0.05). In behavioral tests, daily BC intake showed consistent and significant improvement of neurological deficits for 7 days after MCAO/R. BC ingestion after focal brain ischemia/reperfusion injury may prevent brain injury by reducing serum pro-inflammatory cytokine levels and brain infarct volume in a rat model.

The Effect of Albumin Therapy for Reperfusion Injury Following Transient Focal Cerebral Ischemia in Rats (쥐에서 일과성 국소 뇌허혈 후 생긴 재관류 손상시 알부민치료의 효과)

  • Huh, Pil Woo;Cho, Kyoung Suck;Yoo, Do Sung;Kim, Jae Keon;Kim, Dal Soo;Kang, Joon Ki
    • Journal of Korean Neurosurgical Society
    • /
    • v.30 no.1
    • /
    • pp.12-19
    • /
    • 2001
  • Objective : Albumin is a very useful drug for the improving of cerebral blood volume and the oncotic effect in cerebral ischemia or cerebral vasospasm. The purpose of this study was to examine the morphological and neurological effect of albumin therapy on reperfusion injury following transient focal cerebral ischemia. Materials and Methods : 18 Male Sprague-Dawley rats weighing 270-320g were used. The ischemia model was produced by 2-hour period of transient middle cerebral artery occlusion with a poly-L-lysin coated intraluminal suture. The agent(20% human serum albumin[HSA]) or control solution(NaCl 0.9%) was administered intravenously at a dosage of 1% of body weight immediate after reperfusion following a 2-hour period occlusion. Neurological function was evaluated by the postural reflex and the forlimb placing test during occlusion(at 60 min) and daily for 3 days thereafter. The brain was perfusion-fixed, and infarct volumes and brain edema were measured. Results : The HSA significantly improved the neurological score in treated group. The rats of albumin treatment group showed significantly reduced total infarct volume(by 34%) and brain edema(by 81%) compared with salinetreated rats. Conclusion : HSA showed a substantial effect on the transient focal cerebral ischemia and reperfusion injury model. These results may indicate its usefulness in treating reperfusion injury patients after thrombolysis treatment for the thrombo-embolic major cerebral artery occlusions.

  • PDF

Involvement of Cortical Damage in the Ischemia/Reperfusion-Induced Memory Impairment of Wistar Rats

  • Hong, Jin-Tae;Ryu, Seung-Rel;Kim, Hye-Jin;Lee, Sun-Hee;Lee, Byung-Moo;Kim, Pu-Young
    • Archives of Pharmacal Research
    • /
    • v.23 no.4
    • /
    • pp.413-417
    • /
    • 2000
  • The effect of ischemia/reperfusion-induced neuronal damage on the memory impairment were investigated using active avoidance and Morris water maze tasks in Wistar rats. Focal ischemia was induced by 1 h occlusion of the right middle cerebral artery (MCA) of Wistar male rats. Reperfusion was induced by releasing the occlusion and restoring the blood circulation for 24 h. The acquisition and preservation memory tested by active avoidance showed a significant difference between the sham and ischemia/reperfusion group. The water maze acquisition performance was also significant difference between sham and ischemia/repefusion groups in both latency and moving distance. The infarction volume was increased by the ischemia/reperfusion. Furthermore, the cresyl violet staining of the ischemia/reperfusion brain showed severe neuronal damage (pyramidal cell loss) in the cortex in addition to the striatum lesion of brain. This study shows that pyramidal cell damage in the cortex lesion may be partially related to memorial disturbance in the ischemia/reperfusion brain injury.

  • PDF

Neuroprotection of Dexmedetomidine against Cerebral Ischemia-Reperfusion Injury in Rats: Involved in Inhibition of NF-κB and Inflammation Response

  • Wang, Lijun;Liu, Haiyan;Zhang, Ligong;Wang, Gongming;Zhang, Mengyuan;Yu, Yonghui
    • Biomolecules & Therapeutics
    • /
    • v.25 no.4
    • /
    • pp.383-389
    • /
    • 2017
  • Dexmedetomidine is an ${\alpha}2$-adrenergic receptor agonist that exhibits a protective effect on ischemia-reperfusion injury of the heart, kidney, and other organs. In the present study, we examined the neuroprotective action and potential mechanisms of dexmedetomidine against ischemia-reperfusion induced cerebral injury. Transient focal cerebral ischemia-reperfusion injury was induced in Sprague-Dawley rats by middle cerebral artery occlusion. After the ischemic insult, animals then received intravenous dexmedetomidine of $1{\mu}g/kg$ load dose, followed by $0.05{\mu}g/kg/min$ infusion for 2 h. After 24 h of reperfusion, neurological function, brain edema, and the morphology of the hippocampal CA1 region were evaluated. The levels and mRNA expressions of interleukin-$1{\beta}$, interleukin-6 and tumor nevrosis factor-${\alpha}$ as well as the protein expression of inducible nitric oxide synthase, cyclooxygenase-2, nuclear factor-${\kappa}Bp65$, inhibitor of ${\kappa}B{\alpha}$ and phosphorylated of ${\kappa}B{\alpha}$ in hippocampus were assessed. We found that dexmedetomidine reduced focal cerebral ischemia-reperfusion injury in rats by inhibiting the expression and release of inflammatory cytokines and mediators. Inhibition of the nuclear factor-${\kappa}B$ pathway may be a mechanism underlying the neuroprotective action of dexmedetomidine against focal cerebral I/R injury.

Neuroprotective Effects of Ginkgo biloba extract, GBB, in the Transient Ischemic Rat Model

  • Oh, Jin-Kyung;Jung, Ji-Wook;Oh, Hye-Rim;Han, Yong-Nam;Ryu, Jong-Hoon
    • Biomolecules & Therapeutics
    • /
    • v.15 no.3
    • /
    • pp.169-174
    • /
    • 2007
  • In the present study, we investigated the neuroprotective effects of standardized Ginkgo biloba extract (GBB) (total terpene trilactones, 13 ${\pm}$ 3%; biflavone, 4.5 ${\pm}$ 1.5%; flavonol glycoside, < 8%; proanthocyanidine, under detection limit) on ischemia-reperfusion-induced brain injury in the rats. Ischemia was induced by the intraluminal occlusion of the right middle cerebral artery for 2 h and reperfusion was continued for 22 h. GBB was orally administered, promptly prior to reperfusion and 2 h after. Total infarction volume in the ipsilateral hemispheres of ischemia-reperfusion rats were significantly reduced by treatment with GBB in a dose-dependent manner (P<0.05). The therapeutic time window of GBB was 3 h in this ischemia-reperfusion rat model. Furthermore, GBB also significantly inhibited increased neutrophil infiltration of ischemic brain tissue, as estimated by myeloperoxidase activity. These findings suggest that GBB plays a crucial protective role in ischemia-induced brain injury, in part, via inhibition of neutrophil infiltration, and suggest that this GBB could serve as a neuroprotective agent following transient focal ischemic brain injury.

Leukocyte-Endothelial Cell Adhesion Induced by Ischemia and Reperfusion Observed with in vivo Videomicroscopy (허혈-재관류에 의해 유도된 백혈구-혈관내피세포 유착에 대한 Videomicroscopy 영상소견)

  • Lee, Young Bae;Kang, Han Sug;Park, Shin Byung
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.10
    • /
    • pp.1289-1295
    • /
    • 2000
  • Purpose : Recent evidence suggests a possible role for leukocytes in brain injury following ischemia and reperfusion. This study examined the temporal profile of ischemic tissue damage and leukocyte response after transient middle cerebral artery occlusion(MCAO) with reperfusion in the mouse. Methods : Focal cerebral ischemia was made by temporary occluding of the stem of the proximal MCA. Two groups of the mouse were investigated : (1) sham operation(n=10), and (2)those having the arterial occlusion released after 90 minute(n=20). By 4 hours(n=10) and 24 hours(n=10) after the onset of ischemia-reperfusion, fluorescein videoimages were under-taken in the pial venules of the mouse using a closed cranial window technique. Rhodamine 6G was administered as a $80-100{\mu}l/min$ i.v. loading dose and a $30-40{\mu}l/min$ i.v. maintenance dose in saline to selectively label circulating leukocytes. Neuropathologic evaluation for brain injury was accomplished using the histochemical stain 2,3,5-triphen-yltetrazolium chloride(TTC) and hematoxylin and eosin(H & E) stain. Results : The mean number of adherent leukocytes to cerebral venules in the 90 minutes MCAO and 24 hours reperfusion group were $306{\pm}24$ compared with $72{\pm}8$ in the sham operation group. In the TTC staining method, the cortical infarct affecting 34.8% of hemispheric volume were created in all of animals (n=10) undergoing 90 minute MCAO with 24 hours reperfusion, but the infarcted area were not found in the other(sham operation and 90 minute MCAO with 4 hours reperfusion)groups. In the H & E stain, the brain tissue following 90 minute MCAO with 4 hours reperfusion revealed only a pyknosis of the nuclei with shrunken cytoplasm, but infiltrated leukocytes were not observed. After 24 hours of reperfusion, a many leukocytes were infiltrated within parenchyma and blood vessles. Conclusions : These findings demonstrate the feasiblity of continous in vivo monitoring of leukocyte adherence in cerebral venules and suggest that reperfusion induced leukocyte adherence to venular endothelium may contribute to tissue injury following focal cerebral ischemia.

  • PDF

Effect of Superior Cervical Sympathetic Ganglion Block on Brain Injury Induced by Focal Cerebral Ischemia/Reperfusion in a Rat Model (상경부교감신경절블록이 백서의 국소 뇌허혈/재관류로 인한 뇌 손상에 미치는 영향)

  • Lee, Ae Ryoung;Yoon, Mi Ok;Kim, Hyun Hae;Choi, Jae Moon;Jeon, Hae Yuong;Shin, Jin Woo;Leem, Jeong Gill
    • The Korean Journal of Pain
    • /
    • v.20 no.2
    • /
    • pp.83-91
    • /
    • 2007
  • Background: Cerebral blood vessels are innervated by sympathetic nerves that originate in the superior cervical ganglia (SCG). This study was conducted to determine the effect of an SCG block on brain injury caused by focal cerebral ischemia/reperfusion in a rat model. Methods: Male Sprague-Dawley rats (270-320 g) were randomly assigned to one of three groups (lidocaine, ropivacaine, and control). After brain injury induced by middle cerebral artery (MCA) occlusion/reperfusion, the animals were administered an SCG bloc that consisted of $30{\mu}l$ of 2% lidocaine or 0.75% ropivacaine, with the exception of animals in the control group, which received no treatment. Twenty four hours after brain injury was induced, neurologic scores were assessed and brain samples were collected. The infarct and edema ratios were measured, and DNA fragmented cells were counted in the frontoparietal cortex and the caudoputamen. Results: No significant differences in neurologic scores or edema ratios were observed among the three groups. However, the infarct ratio was significantly lower in the ropivacaine group than in the control group (P < 0.05), and the number of necrotic cells in the caudoputamen of the ropivacaine group was significantly lower than in the control group (P < 0.01). Additionally, the number of necrotic and apoptotic cells in theropivacaine group were significantly lower than inthe control group in both the caudoputamen and the frontoparietal cortex (P < 0.05). Conclusions: Brain injury induced by focal cerebral ischemia/reperfusion was reduced by an SCG block using local anesthetics. This finding suggests that a cervical sympathetic block could be considered as another treatment option for the treatment of cerebral vascular diseases.

The Effects of Superior Cervical Sympathetic Ganglion Block on the Acute Phase Injury and Long Term Protection against Focal Cerebral Ischemia/Reperfusion Injury in Rats (백서의 국소 뇌허혈/재관류로 인한 신경손상에서 상경부 교감 신경절 블록의 급성기 및 장기 보호효과)

  • Jeon, Hae Young;Joung, Kyoung Woon;Choi, Jae Moon;Kim, Yoo Kyung;Shin, Jin Woo;Leem, Jeong Gill;Han, Sung Min
    • The Korean Journal of Pain
    • /
    • v.21 no.2
    • /
    • pp.119-125
    • /
    • 2008
  • Background: Cerebral blood vessels are innervated by sympathetic nerves from the superior cervical ganglia (SCG), and these nerves may influence the cerebral blood flow. The purpose of the present study was to evaluate the neuroprotective effect of superior cervical sympathetic ganglion block in rats that were subjected to focal cerebral ischemia/reperfusion injury. Methods: Eighty male Sprague-Dawley rats (270-320 g) were randomly assigned to one of two groups (the ropivacaine group and a control group). In all the animals, brain injury was induced by middle cerebral artery (MCA) reperfusion that followed MCA occlusion for 2 hours. The animals of the ropivacaine group received $30{\mu}l$ of 0.75% ropivacaine, and their SCG. Neurologic score was assessed at 1, 3, 7 and 14 days after brain injury. Brain tissue samples were then collected. The infarct ratio was measured by 2.3.5-triphenyltetrazolium chloride staining. The terminal deoxynucleotidyl transferase mediated dUTP-biotin nick-end labeled (TUNEL) reactive cells and the cells showing caspase-3 activity were counted as markers of apoptosis at the caudoputamen and frontoparietal cortex. Results: The death rate, the neurologic score and the infarction ratio were significantly less in the ropivacaine group 24 hr after ischemia/reperfusion injury. The number of TUNEL positive cells in the ropivacaine group was significantly lower than those values of the control group in the frontoparietal cortex at 3 days after injury, but the caspase-3 activity was higher in the ropivacaine group than that in the control group at 1 day after injury. Conclusions: The study data indicated that a superior cervical sympathetic ganglion block may reduce the neuronal injury caused by focal cerebral ischemia/reperfusion, but it may not prevent the delayed damage.

Kinetic Changes of COX-2 Expression during Reperfusion Period after Ischemic Preconditioning Play a Role in Protection Against Ischemic Damage in Rat Brain

  • Kang, Young-Jin;Park, Min-Kyu;Lee, Hyun-Suk;Choi, Hyoung-Chul;Lee, Kwang-Youn;Kim, Hye-Jung;Seo, Han-Geuk;Lee, Jae-Heun;Chang, Ki-Churl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.5
    • /
    • pp.275-280
    • /
    • 2008
  • A brief ischemic insult induces significant protection against subsequent massive ischemic events. The molecular mechanisms known as preconditioning (PC)-induced ischemic tolerance are not completely understood. We investigated whether kinetic changes of cyclooxygenase (COX)-2 during reperfusion time-periods after PC were related to ischemic tolerance. Rats were given PC by occlusion of middle cerebral artery (MCAO) for 10 min and sacrificed after the indicated time-periods of reperfusion (1, 2, 4, 8, 12, 18 or 24 h). In PC-treated rats, focal ischemia was induced by occlusion of MCA for 24 h and brain infarct volume was then studied to determine whether different reperfusion time influenced the damage. We report that the most significant protection against focal ischemia was obtained in rats with 8 h reperfusion after PC. Administration of indomethacin (10 mg/kg, oral) or rofecoxib (5 mg/kg, oral) 48 h prior to PC counteracted the effect of PC. Immunohistochemical analysis showed that COX-2 and HO-l protein were induced in PC-treated rat brain, which was significantly inhibited by rofecoxib. Taken together, we concluded that the kinetic changes of COX-2 expression during the reperfusion period after PC might be partly responsible for ischemic tolerance.

The Effect of Modified Boyanghwano-tang on the Brain Infarction Through the Anti-apoptosis of Neuronal Cells in Ischemic Rats (가미보양환오탕이 뇌허혈모델에서 신경세포보호를 통해 뇌경색억제에 미치는 효과)

  • Han, Chang-Ho;Park, Yong-Ki
    • Journal of Acupuncture Research
    • /
    • v.27 no.4
    • /
    • pp.29-38
    • /
    • 2010
  • Objectives : The purpose of the study is to determine the neuroprotective effect of modified Boyanghwano-tang(mBHT), a traditional Korean medicine, on the transient focal cerebral ischemia in rats. Methods : Focal ischemia and reperfusion were induced by middle cerebral artery occlusion(MCAO) for 90 min, followed by 144 h reperfusion in rats. mBHT(200mg/kg body weight, p.o.) was administrated in rats once a day during reperfusion. At the end of treatment, brain infarction was measured by TTC staining, and histological change was observed by H&E staining. The expressions of Bax, Bcl-2 and cytochrome c in ischemic brains were determined by immunofluorescent analysis. Results : mBHT significantly reduced the cerebral infarct volumes of the MCAO rats. mBHT also attenuated the neuronal cell death and the expressions of pro-apoptotic molecules, bax and cytochrome c in ischemic brains. Further, mBHT significantly increased the survival time of ischemeic rats and the expression of anti-apoptotic molecule, Bcl-2 in ischemic brains. Conclusions : Our results suggest that mBHT is neuroprotective and may prove to be useful adjunct in the treatment of ischemic stroke.