Browse > Article

Kinetic Changes of COX-2 Expression during Reperfusion Period after Ischemic Preconditioning Play a Role in Protection Against Ischemic Damage in Rat Brain  

Kang, Young-Jin (Department of Pharmacology and Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University)
Park, Min-Kyu (Department of Pharmacology, School of Medicine and Institute of Health Sciences, Gyeongsang National University)
Lee, Hyun-Suk (Department of Pharmacology, School of Medicine and Institute of Health Sciences, Gyeongsang National University)
Choi, Hyoung-Chul (Department of Pharmacology and Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University)
Lee, Kwang-Youn (Department of Pharmacology and Aging-associated Vascular Disease Research Center, College of Medicine, Yeungnam University)
Kim, Hye-Jung (Department of Pharmacology, School of Medicine and Institute of Health Sciences, Gyeongsang National University)
Seo, Han-Geuk (Department of Pharmacology, School of Medicine and Institute of Health Sciences, Gyeongsang National University)
Lee, Jae-Heun (Department of Pharmacology, School of Medicine and Institute of Health Sciences, Gyeongsang National University)
Chang, Ki-Churl (Department of Pharmacology, School of Medicine and Institute of Health Sciences, Gyeongsang National University)
Publication Information
The Korean Journal of Physiology and Pharmacology / v.12, no.5, 2008 , pp. 275-280 More about this Journal
Abstract
A brief ischemic insult induces significant protection against subsequent massive ischemic events. The molecular mechanisms known as preconditioning (PC)-induced ischemic tolerance are not completely understood. We investigated whether kinetic changes of cyclooxygenase (COX)-2 during reperfusion time-periods after PC were related to ischemic tolerance. Rats were given PC by occlusion of middle cerebral artery (MCAO) for 10 min and sacrificed after the indicated time-periods of reperfusion (1, 2, 4, 8, 12, 18 or 24 h). In PC-treated rats, focal ischemia was induced by occlusion of MCA for 24 h and brain infarct volume was then studied to determine whether different reperfusion time influenced the damage. We report that the most significant protection against focal ischemia was obtained in rats with 8 h reperfusion after PC. Administration of indomethacin (10 mg/kg, oral) or rofecoxib (5 mg/kg, oral) 48 h prior to PC counteracted the effect of PC. Immunohistochemical analysis showed that COX-2 and HO-l protein were induced in PC-treated rat brain, which was significantly inhibited by rofecoxib. Taken together, we concluded that the kinetic changes of COX-2 expression during the reperfusion period after PC might be partly responsible for ischemic tolerance.
Keywords
Ischemic preconditioning; Stroke; Heme oxygenase; Cyclooxygenase;
Citations & Related Records

Times Cited By Web Of Science : 1  (Related Records In Web of Science)
Times Cited By SCOPUS : 1
연도 인용수 순위
1 Danton GH, Dietrich WD. Inflammatory mechanisms after ischemia and stroke. J Neuropathol Exp Neurol 62: 127-136, 2003   DOI   PUBMED
2 Garau A, Bertini R, Colotta F, Casilli F, Bigini P, Cagnotto A, Mennini T, Ghezzi P, Villa P. Neuroprotection with the CXCL8 inhibitor repertaxin in transient brain ischemia. Cytokine 30: 125-131, 2005   DOI   ScienceOn
3 Khan M, Sekhon B, Giri S, Jatana M, Gilg AG, Ayasolla K, Elango C, Singh AK, Singh I. S-Nitrosoglutathione reduces inflammation and protects brain against focal cerebral ischemia in a rat model of experimental stroke. J Cereb Blood Flow Metab 25: 177-192, 2005   DOI   ScienceOn
4 Shinmura K, Tang XL, Wang Y, Xuan YT, Liu SQ, Takano H, Bhatnagar A, Bolli R. Cyclooxygenase-2 mediates the cardioprotective effects of the late phase of ischemic preconditioning in conscious rabbits. Proc Natl Acad Sci U S A 97: 10197-10202, 2000
5 Truettner J, Busto R, Zhao W, Ginsberg MD, Pérez-Pinzón MA. Effect of ischemic preconditioning on the expression of putative neuroprotective genes in the rat brain. Brain Res Mol Brain Res 103: 106-115, 2002   DOI   PUBMED   ScienceOn
6 Xu Z, Ford GD, Croslan DR, Jiang J, Gates A, Allen R, Ford BD. Neuroprotection by neuregulin-1 following focal stroke is associated with the attenuation of ischemia-induced pro- inflammatory and stress gene expression. Neurobiol Dis 19: 461-470, 2005   DOI   ScienceOn
7 Yenari MA, Liu J, Zheng Z, Vexler ZS, Lee JE, Giffard RG. Antiapoptotic and anti-inflammatory mechanisms of heat-shock protein protection. Ann NY Acad Sci 1053: 74-83, 2005   DOI   ScienceOn
8 Veldhuis WB, Derksen JW, Floris S, Van Der Meide PH, De Vries, J Schepers HE, Vos IM, Dijkstra CD, Kappelle LJ, Nicolay K, Bar PR. Interferon-beta blocks infiltration of inflammatory cells and reduces infarct volume after ischemic stroke in the rat. J Cereb Blood Flow Metab 23: 1029-1039, 2003   DOI   PUBMED
9 Edwards RJ, Saurin AT, Rakhit RD, Marber MS. Therapeutic potential of ischemic preconditioning. Br J Clin Pharamcol 50: 87-97, 2000   DOI   ScienceOn
10 Planas AM, Soriano MA, Justicia C, Rodríguez-Farré E. Induction of cyclooxygenase-2 in the rat brain after a mild episode of focal ischemia without tissue inflammation or neural cell damage. Neurosci Lett 275: 141-144, 1999   DOI   ScienceOn
11 Koistinaho J, Koponen S, Chan PH. Expression of cyclooxygenase-2 mRNA after global ischemia is regulated by AMPA receptors and glucocorticoids. Stroke 30: 1900-1905, 1999   DOI   PUBMED   ScienceOn
12 Dhodda VK, Sailor KA, Bowen KK, Vemuganti R. Putative endogenous mediators of preconditioning-induced ischemic tolerance in rat brain identified by genomic and proteomic analysis. J Neurochem 89: 73-89, 2004   DOI   ScienceOn
13 Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302: 1760-1765, 2003   DOI   PUBMED   ScienceOn
14 Guide for the care and Use of Laboratory Animals. NRC [National Research Council]. 7th ed. National Academy Press, Washington DC, 1996
15 Stenzel-Poore MP, Stevens SL, Simon RP. Genomics of preconditioning. Stroke 35: 2683-2686, 2004   DOI   PUBMED   ScienceOn
16 Kirino T. Ischemic tolerance. J Cereb Blood Flow Metab 22: 1283-1296, 2002   DOI   PUBMED
17 Ray WA, Stein CM, Daugherty JR, Hall K, Arbogast PG, Griffin MR. COX-2 selective non-steroidal anti-inflammatory drugs and risk of serious coronary heart disease. Lancet 360: 1071-1073, 2002   DOI   ScienceOn
18 Barone FC, Feuestein GZ. Inflammatory mediators and stroke: new opportunities for novel therapeutics. J Cereb Blood Flow Metab 19: 819-834, 1999   DOI
19 Choi HC, Kim HS, Lee KY, Chang KC, Kang YJ. NS-398 inhibits proliferation of vascular smooth muscle cells in response to IL-1- by induction of HO-1$\beta$. Biochem Biophys Res Commun 376: 753-757, 2008   DOI   ScienceOn
20 Hong SJ, Li H, Becker KG, Dawson VL, Dawson TM, Identification and analysis of plasticity-induced late-response genes. Proc Natl Acad Sci USA 101: 2145-2150, 2004
21 Zhang W, Stanimirovic D. Current and future therapeutic strategies to target inflammation in stroke. Curr Drug Targets Inflamm Allergy 1: 151-166, 2002   DOI   ScienceOn
22 Bernaudin M, Tang Y, Reilly M, Petit E, Sharp FR. Brain genomic response following hypoxia and re-oxygenation in the neonatal rat. Identification of genes that might contribute to hypoxia- induced ischemic tolerance. J Biol Chem 277: 39728-39738, 2002   DOI   PUBMED
23 Yrjanheikki J, Tikka T, Keinanen R, Goldsteins G, Chan PH, Koistinaho J. A tetracycline derivative, minocycline, reduces inflammation and protects against focal cerebral ischemia with a wide therapeutic window. Proc Natl Acad Sci USA 96: 13496-13500, 1999