• 제목/요약/키워드: Focal adhesion

검색결과 92건 처리시간 0.023초

세포흡착 거동의 기계적/생화학적 분석 (Mechanical/Biochemical Analysis of Cell Adhesion Strengthening)

  • 신흥수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1455-1457
    • /
    • 2008
  • Cell adhesion is a coordinated process involving initial binding of integrin receptors to extracellular matrix (ECM), recruitment of adhesion proteins, and focal adhesion assembly. The formation of mechanically stable focal adhesion assembly of cells within surrounding ECM is a key parameter to direct numerous cellular functions including cell migration, differentiation, and apotosis. With current cell adhesion assays, it is difficult to understand contributions of each coordinated event on evolution of cell adhesion strengthening since cells spontaneously spread upon their adhesion to the substrate, thus remodeling their cytoskeletal structure. In this presentation, novel approaches for analysis of cell adhesion strengthening process based on the combination of mechanical device, micro-patterned substrates, and molecular biological techniques will be discussed.

  • PDF

Focal adhesion linker proteins expression of fibroblast related to adhesion in response to different transmucosal abutment surfaces

  • Moon, Yeon-Hee;Yoon, Mi-Kyeong;Moon, Jung-Sun;Kang, Jee-Hae;Kim, Sun-Hun;Yang, Hong-Seo;Kim, Min-Seok
    • The Journal of Advanced Prosthodontics
    • /
    • 제5권3호
    • /
    • pp.341-350
    • /
    • 2013
  • PURPOSE. To evaluate adherence of human gingival fibroblasts (HGFs) to transmucosal abutment of dental implant with different surface conditions with time and to investigate the roles of focal adhesion linker proteins (FALPs) involved in HGFs adhesion to abutment surfaces. MATERIALS AND METHODS. Morphologies of cultured HGFs on titanium and ceramic discs with different surface were observed by scanning electron microscopy. Biocompatibility and focal adhesion were evaluated by ultrasonic wave application and cell viability assay. FALPs expression levels were assessed by RT-PCR and western blot. RESULTS. There seemed to be little difference in biocompatibility and adhesion strength of HGFs depending on the surface conditions and materials. In all experimental groups, the number of cells remaining on the disc surface after ultrasonic wave application increased more than 2 times at 3 days after seeding compared to 1-day cultured cells and this continued until 7 days of culture. FALPs expression levels, especially of vinculin and paxillin, also increased in 5-day cultured cells compared to 1-day cultured fibroblasts on the disc surface. CONCLUSION. These results might suggest that the strength of adhesion of fibroblasts to transmucosal abutment surfaces increases with time and it seemed to be related to expressions of FALPs.

Surface Topographical Cues for Regulating Differentiation of Human Neural Stem Cells

  • Yang, Kisuk;Lee, Jong Seung;Lee, Jaehong;Cheong, Eunji;Lee, Taeyoon;Im, Sung Gap;Cho, Seung-Woo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2016년도 추계학술대회 논문집
    • /
    • pp.122.2-122.2
    • /
    • 2016
  • Surface topographical cues has been highlighted to control the fate of neural stem cells (NSCs). Herein we developed a hierarchically patterned substrate (HPS) platform for regulating NSC differentiation. The HPS induced cytoskeleton alignment and highly activated focal adhesion in hNSCs as indicated by enhanced expression of focal adhesion proteins such as focal adhesion kinase (FAK) and vinculin. hNSCs cultured on HPS exhibited enhanced neuronal differentiation compared to flat group. We also developed a graphene oxide (GO)-based hierarchically patterned substrates (GPS) that promote focal adhesion formation and neuronal differentiation of hNSCs. Enhanced focal adhesion and differentiation of hNSCs on the HPS was reversed by blocking the ${\beta}1$ integrin binding and mechanotransduction-associated signals including Rho-associated protein kinase (ROCK) and extracellular-regulated kinase (ERK) pathway, which may suggest a potential mechanism of beneficial effects of HPS. In addition, hNSCs on the HPS differentiated into functional neurons exhibiting sodium currents and action potentials as confirmed by whole cell patch-clamping analysis. The hierarchical topography can direct differentiation of NSCs towards functional neurons, and therefore would be an important element for the design of functional biomaterials for neural tissue regeneration applications.

  • PDF

Pleckstrin homology domain of phospholipase D2 is a negative regulator of focal adhesion kinase

  • Kim, Mi Kyoung;Hwang, Won Chan;Min, Do Sik
    • BMB Reports
    • /
    • 제54권2호
    • /
    • pp.112-117
    • /
    • 2021
  • Phospholipase D2 (PLD2) has been implicated in the tyrosine kinase-mediated signaling pathways, but the regulation events are yet to be identified. Herein, we demonstrate that pleckstrin homology (PH) domain of PLD2 (PLD2-PH) exerts an antitumorigenic effect via the suppression of PLD2 and focal adhesion kinase (FAK). The kinase domain of FAK interacts with PLD2-PH and induces tyrosine phosphorylation and activation of PLD2. Furthermore, PLD2 increased tyrosine phosphorylation of FAK. However, ectopic expression of the PLD2-PH competes for binding to FAK and reduces the interaction between PLD2 and FAK, thereby suppressing FAK-induced PLD activation and tyrosine phosphorylation of FAK. The PLD2-PH suppressed the migration and invasion of glioblastoma cells, as well as tumor formation in a xenograft mouse model. This study uncovers a novel role of PLD2-PH as a negative regulator of PLD2 and FAK.

임플랜트 주위 연조직세포의 세포-기질 접착 (CELL-MATRIX ADHESIONS OF SOFT TISSUE CELLS AROUND DENTAL IMPLANTS)

  • 이석원;류인철;한종현;이재봉
    • 대한치과보철학회지
    • /
    • 제44권1호
    • /
    • pp.73-84
    • /
    • 2006
  • The importance of soft tissue response to implant abutments has become one of the major issues in current implant dentistry. To date, numerous studies have emphasized on maintaining connective tissue barriers in quantity, as well as in quality fir the long term success of dental implants. The cells mainly consisting the soft tissue around dental implants are fibroblasts and epithelial cells. The mechanism of the fibroblasts adhesions to certain substrata can be explained by the 'focal adhesion' theory. On the other hand, epithelial cells adhere tn the substratum via hemidesmosomes. The typical integrin-mediated adhesions of cells to certain matrix are called 'cell-matrix adhsions'. The focal adhesion complex of fibroblasts, in relation to the cell-matrix adhsions, consists of the extracellular matrix(ECM) such as fibronectin, the transmembrane proteins such as integrins, the intracellular cytoplasmic proteins such as vinculin, talin, and more, and the cytoskeletal structures such as filamentous actin and microtubules. The mechanosensory function of integrins and focal adhesion complexes are considered to play a major role in the cells adhesion, migration, proliferation, differentiation, division, and even apoptosis. The '3-D matrix adhesions' defined by Cukierman et al. makes a promising future for the verification of the actual process of the cell-matrix adhesions in vivo and can be applied to the field of implant dentistry in relation to obtaining strong soft tissue attachment to the implant abutments.

Adhesion of Human Osteoblasts Cell on CrN Thin Film Deposited by Cathodic Arc Plasma Deposition

  • Pham, Vuong-Hung;Kim, Sun-Kyu
    • 한국표면공학회지
    • /
    • 제42권5호
    • /
    • pp.203-207
    • /
    • 2009
  • Interaction between human osteoblast (hFOB 1.19) and CrN films was conducted in vitro. CrN films were produced by cathodic arc plasma deposition. The surface was characterized by atomic force microscopy (AFM). CrN films, glass substrates and TiN films were cultured with human osteoblasts for 48 and 72 hours. Actin stress fiber patterns and cell adhesion of osteoblasts were found less organized and weak on CrN films compared to those on the glass substrates and the TiN films. Human osteoblasts also showed less proliferation and less distributed microtubule on CrN films compared to those on glass substrates and TiN films. Focal contact adhesion was not observed in the cells cultured on CrN films, whereas focal contact adhesion was observed well in the cells cultured on glass substrates and TiN films. As a result, the CrN film is a potential candidate as a surface coating to be used for implantable devices which requires minimal cellular adhesion.

Syntenin Is Expressed in Human Follicular Dendritic Cells and Involved in the Activation of Focal Adhesion Kinase

  • Cho, Whajung;Kim, Hyeyoung;Lee, Jeong-Hyung;Hong, Seung Hee;Choe, Jongseon
    • IMMUNE NETWORK
    • /
    • 제13권5호
    • /
    • pp.199-204
    • /
    • 2013
  • Syntenin is an adaptor molecule containing 2 PDZ domains which mediate molecular interactions with diverse integral or cytoplasmic proteins. Most of the results on the biological function of syntenin were obtained from studies with malignant cells, necessitating exploration into the role of syntenin in normal cells. To understand its role in normal cells, we investigated expression and function of syntenin in human lymphoid tissue and cells in situ and in vitro. Syntenin expression was denser in the germinal center than in the extrafollicular area. Inside the germinal center, syntenin expression was obvious in follicular dendritic cells (FDCs). Flow cytometric analysis with isolated cells confirmed a weak expression of syntenin in T and B cells and a strong expression in FDCs. In FDC-like cells, HK cells, most syntenin proteins were found in the cytoplasm compared to weak expression in the nucleus. To study the function of syntenin in FDC, we examined its role in the focal adhesion of HK cells by depleting syntenin by siRNA technology. Knockdown of syntenin markedly impaired focal adhesion kinase phosphorylation in HK cells. These results suggest that syntenin may play an important role in normal physiology as well as in cancer pathology.

Epigenetic silencing of olfactomedin-4 enhances gastric cancer cell invasion via activation of focal adhesion kinase signaling

  • Guo, Li-Li;He, Zhao-Cai;Yang, Chang-Qing;Qiao, Pei-Tang;Yin, Guo-Ling
    • BMB Reports
    • /
    • 제48권11호
    • /
    • pp.630-635
    • /
    • 2015
  • Downregulation of olfactomedin-4 (OLFM4) is associated with tumor progression, lymph node invasion and metastases. However, whether or not downregulation of OLFM4 is associated with epigenetic silencing remains unknown. In this study, we investigate the role of OLFM4 in gastric cancer cell invasion. We confirm the previous result that OLFM4 expression is increased in gastric cancer tissues and decreases with an increasing number of metastatic lymph nodes, which are associated with OLFM4 promoter hypermethylation. Overexpression of OLFM4 in gastric cancer cells had an inhibitory effect on cell invasion. Furthermore, we found that focal adhesion kinase (FAK) was negatively correlated with OLFM4 in regards to lymph node metastasis in gastric cancer tissues. Also, inhibition of FAK induced by OLFM4 knockdown resulted in a decrease in cell invasion. Thus, our study demonstrates that epigenetic silencing of OLFM4 enhances gastric cancer cell invasion via activation of FAK signaling.

연골세포 부착력 평가 (Adhesion Strength Measurement of Chondrocyte)

  • 이권용;박상국;;박종철
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2004년도 학술대회지
    • /
    • pp.362-366
    • /
    • 2004
  • Quantitative evaluation of substrates for cells is essential to understanding cell-material adhesive interaction and it is also necessary for the development of new biomaterials. Many cells on adhesive molecules will form an organization of actin into bundles and production of the large, highly organized structures termed focal adhesions. To better understand adhesion formations between cells and substrata, we have quantified the force required to displace attached cell. we allowed rabbit knee chondrocyte to attach on a substratum of microscope slide glass. Our results demonstrate that a force is required to detach cells is changed according to detachment time variation.

  • PDF