• Title/Summary/Keyword: Flux-Flow

Search Result 1,680, Processing Time 0.028 seconds

COMPARISON OF THE TREATMENTS OF TURBULENT HEAT FLUX FOR NATURAL CONVECTION WITH THE ELLIPTIC-BLENDING SECOND-MOMENT CLOSURE (Elliptic Blending Model을 사용하여 자연대류 해석 시 난류열유속 처리법 비교)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.12 no.2
    • /
    • pp.26-31
    • /
    • 2007
  • A comparative study on the treatment of the turbulent heat flux with the elliptic blending second-moment closure for a natural convection flow is performed. Three cases of different treating the turbulent heat flux are considered. Those are the generalized gradient diffusion hypothesis (GGDH), the algebraic flux model (AFM) and the differential flux model (DFM). The constants in the models are adjusted with a primary emphasis placed on the accuracy of predicting the local Nusselt number. These models are implemented in a computer code specially designed for evaluation of turbulent models. Calculations are performed for a turbulent natural convection in the 1:5 rectangular cavity and the calculated results are compared with the available experimental data. The results show that the three models produce nearly the same accuracy of solutions. These results show that the GGDH, AFM and DFM models for treating the turbulent heat flux are sufficient for this simple shear flow where the shear production is dominant. It is observed that, in the weakly stratified region at the center zone of the cavity, the vertical velocity fluctuation is nearly zero in the GGDH solutions, which shows that the GGDH model may not be suitable for the strongly stratified flow. Thus, further study on the strongly stratified flow should be followed.

A Dispersion and Characteristic Analysis for the One-dimensional Two-fluid Mode with Momentum Flux Parameters

  • Song, Jin-Ho;Kim, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.409-422
    • /
    • 2001
  • The dynamic character of a system of the governing differential equations for the one- dimensional two-fluid model, where the momentum flux parameters are employed to consider the velocity and void fraction distribution in a flow channel, is investigated. In response to a perturbation in the form of a'traveling wave, a linear stability analysis is peformed for the governing differential equations. The expression for the growth factor as a function of wave number and various flow parameters is analytically derived. It provides the necessary and sufficient conditions for the stability of the one-dimensional two-fluid model in terms of momentum flux parameters. It is demonstrated that the one-dimensional two-fluid model employing the physical momentum flux parameters for the whole range of dispersed flow regime, which are determined from the simplified velocity and void fraction profiles constructed from the available experimental data and $C_{o}$ correlation, is stable to the linear perturbations in all wave-lengths. As the basic form of the governing differential equations for the conventional one-dimensional two-fluid model is mathematically ill posed, it is suggested that the velocity and void distributions should be properly accounted for in the one-dimensional two-fluid model by use of momentum flux parameters.s.

  • PDF

Two Different Enclosure-based Measurements Applications for Trace Gas Surface Emission and Sensitivity Analysis for Soil NO Emission by Using a Flow-through Dynamic System (지표 미량기체 방출에 대한 두 가지 다른 형태의 Enclosure 기반 측정 방법의 응용 및 Flow-through Dynamic System을 이용한 토양 NO 방출의 민감도 분석)

  • Kim, Deug-Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.9 no.3
    • /
    • pp.170-178
    • /
    • 2007
  • Rapid increases in the concentrations of greenhouse gases and many other chemically important trace gases have occurred over the last several centuries. For understanding the roles of these important gases in global change, it is essential to identify their sources and sinks, to characterize biogenic gas fluxes between the biosphere and atmosphere, and to understand the processes that control them. In this paper, enclosure-based measurements are described in a practical manner for field experiments. Theoretical reviews of mass balance equation in the enclosure and sensitivity of the flow-through dynamic flux chamber technique are presented; specifically for the case of NO flux measurements from soil surface. The physical system and theory behind the flow-through dynamic flux chamber method are examined. New calculation flux formula was introduced by considering NO chemical loss on chamber wall and uncertainties of the NO flux calculation were discussed.

Effects of the secondary flow on the turbulent heat transfer of a flat plate wake (2차유동이 평판후류의 난류열전달에 미치는 영향)

  • Kim, Hyeong-Su;Lee, Jun-Sik;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.417-427
    • /
    • 1998
  • The effect of secondary flow on the heat transfer of a turbulent wake generated by a flat plate was experimentally investigated. The secondary flow was induced in a curved duct in which the flat plate wake generator was installed. All three components of turbulent heat flux were measured in the plane containing the mean radius of curvature of the curved duct. The results showed that mean temperature profiles deviate from the similarity of the straight wake because of the cold fluid transported from the free-stream. The half-width of the mean temperature profile increased rapidly by upwash motion of the secondary flow. The changes to turbulence structure caused by the secondary flow show more pronounced effect on heat transport than on momentum transport. This is because the response to the variation of flow conditions is delayed in temperature field. Negative production of the turbulent heat flux is observed in the inner wake region. From the conditional averaging, it has been found that the negative production of the turbulent heat flux is generated due to a mixing process between the hot and low momentum eddies occupied in the inner wake region and the cold and high momentum eddies in the potential region.

Model Parametrization on the Mixing Behavior of Coastal Discharges

  • Kim, Jong-Kyu
    • Journal of Ocean Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.1-7
    • /
    • 2003
  • A common feature in the three-dimensional numerical model experiments of coastal discharge with simplifed model and idealized external forcings is investigated. The velocity fields due to the buoyancy and flow flux, are spreaded radiately and the surface velocites are much greater than homegeneous discharges. The coastal dischargd due to the Coriolis force and flow flux are shaped a anticyclical gyre (clockwise) and determined the scale of the gyre in the coastal zone, respectively. The bottom topography restricts a outward extention of the coastal fronts and it accelerates a southward flow.

Effects of Nose Radius of Blunt Body on Aerodynamic Heating in Thermochemical Nonequilibrium Flow (무딘 물체의 노즈 반지름이 비평형 유동의 공력 가열에 미치는 영향)

  • Lee Chang Ho;Park Seung O
    • Journal of computational fluids engineering
    • /
    • v.8 no.4
    • /
    • pp.34-40
    • /
    • 2003
  • The effect of nose radius on aerodynamic heating is investigated by using the Navier-Stokes code extended to thermochemical nonequilibrium airflow, Spherical blunt bodies, whose nose radius varies from 0.O03048 m to 0.6096 m, flying at Mach 25 at an altitude of 53.34 km are considered. Comparison of heat flux at stagnation point with the solution of Viscous Shock Layer and Fay-Riddell are made. Results show that the flow for very small radius is in a nearly frozen state, and therefore the heat flux due to diffusion is smaller than that due to translational energy. As the radius becomes larger, the portion of heat flux by diffusion becomes greater than that of heat flux by translational temperature and approaches to a constant value.

An Experimental Study on Heat Transfer Coefficients just before Critical Heat Flux Conditions in Uniformly Heated Vertical Annulus (균일 가열 수직 환상관에서 임계열유속조건 직전의 열전달계수에 관한 실험적 연구)

  • Chun, Se-Young;Lim, Chang-Ha;Moon, Sang-Ki;Chung, Moon-Ki;Choi, Young-Don
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.330-336
    • /
    • 2001
  • Water heat transfer experiments were carried out in a uniformly heated annulus with a wide range of pressure conditions. The local heat transfer coefficients for saturated water flow boiling have been measured just before the occurrence of the critical heat flux (CHF) along the length of the heated section. The trends of the measured heat transfer coefficients were quite different from the conventional understanding for the heat transfer of saturated flow boiling. This discrepancy was explained from the nucleate boiling in the liquid film of annular flow under high heat flux conditions.

  • PDF

액막류의 MHF점에 관한 실험적 연구

  • 김영찬;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.10
    • /
    • pp.960-965
    • /
    • 2001
  • The minimum heat flux conditions are experimentally investigated for the subcooled liquid film flow on the horizontal plate. The experimental results show that the minimum heat flux point temperature becomes higher with the increase of the velocity and the subcooling of the liquid film flow. However, the effect of distance from the leading edge of the heat transfer plate on the minimum heat flux is almost negligible. Also, the experimental results show that the propagation velocity of wetting front increases with increasing the velocity and the subcooling of the liquid film flow.

  • PDF

A Study of Flow Condensation Inside Mini-Channels with Circular and Rectangular Cross Section (원형 및 사각단면의 미세채널내 흐름응축 열전달 연구)

  • Shin, Jeong-Seob;Kim, Moo-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1458-1463
    • /
    • 2004
  • By using unique experimental techniques and careful construction of the experimental apparatus, the characteristics of the local heat transfer were investigated using the condensing R134a two-phase flow, in horizontal single mini-channels. The circular channels ($D_h=0.493$, 0.691, and 1.067 mm) and rectangular channels ($D_h=0.494$, 0.658, and 0.972 mm) were tested and compared. Tests were performed for a mass flux of 100, 200, 400, and 600 $kg/m^2s$, a heat flux of 5 to 20 $kW/m^2$, and a saturation temperature of $40^{\circ}C$. In this study, effect of heat flux, mass flux, vapor qualities, hydraulic diameter, and channel geometry on flow condensation were investigated and the experimental local condensation heat transfer coefficients are shown. The experimental data of condensation Nusselt number are compared with existing correlations.

  • PDF

Model Parametrization on the Mixing Behavior of Coastal Discharges

  • Kim, Jong-Kyu
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • v.6 no.1
    • /
    • pp.15-21
    • /
    • 2003
  • A common feature in the three-dimensional numerical model experiments of coastal discharge with simplified model and idealized external forcings is investigated. The velocity fields due to the buoyancy and flaw flux, are spreaded radiately and the surface velocites are much greater than the homegeneous discharges. The coastal dischargd due to the Coriolis force and flaw flux are shaped a anticyclical gyre (clockwise) and determined the scale of the gyre in the coastal zone, respectively. The bottom topography restricts a outward extention of the coastal fronts and it accelerates a southward flow.

  • PDF