• Title/Summary/Keyword: Fluorophosphate

Search Result 16, Processing Time 0.025 seconds

Spectroscopic properties of Er3+/Yb3+ co-doped fluorophosphate glasses for NIR luminescence and optical temperature sensor applications

  • Linganna, K.;Agawane, G.L.;In, Jung-Hwan;Park, June;Choi, Ju H.
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.67
    • /
    • pp.236-243
    • /
    • 2018
  • A series of $Er^{3+}/Yb^{3+}$ co-doped fluorophosphate glasses with varying $YbF_3$ concentration were prepared by a high temperature melt quenching technique. Absorption and emission cross-sections were determined by using the McCumber theory. The larger emission cross-section ($9.86{\times}10^{-21}cm^2$) and longer fluorescence lifetime (12.37 ms) were obtained for the $^4I_{13/2}{\rightarrow}^4I_{15/2}$ transition of ABS3Er4Yb glass. The sensitivity and temperature of the maximum sensitivity were evaluated by the fluorescence intensity ratio method from the measured upconversion spectra. The results were discussed and compared to the other reported glasses.

Hydrolysis of DFP Using Cu(II)-Lactic Acid and Cu(II)-LMWS-Chitosan Chelates (Cu(II)-Lactic Acid와 Cu(II)-LMWS-Chitosan 착물의 DFP 가수분해반응 연구)

  • Kye, Young-Sik;Jeong, Keunhong;Kim, Dongwook
    • Applied Chemistry for Engineering
    • /
    • v.31 no.5
    • /
    • pp.475-480
    • /
    • 2020
  • Chelates synthesized with Cu(II) ion and lactic acid or chitosan were applied to the hydrolysis of organophosphate simulant, DFP (diisopropyl fluorophosphate). Under the homogeneous reaction condition, Cu(II)-lactic acid chelate hydrolyzed DFP with the half life time of 37.1 min. Cu(II)-LMWS chitosan chelate was synthesized with 1 kDa molecular weight of chitosan, which showed low solubility, and then crystallized. The half life time for hydrolyzing DFP using Cu(II)-LMWS chitosan was 32.9 h indicating that the reaction rate is enhanced as much as 16 times more than that of using 18 kDa chitosan-Cu(II) complex. Under the homogeneous reaction condition, the half life time of Cu(II)-LMWS chitosan was 8.75 h. Therefore, we found out that the solubility of Cu(II)-LMWS chitosan makes the difference in the reaction rate as much as 4 times.

Partial Purification and Characterization of the Alkaline Protease from Baccillus sp. (Bacillus sp.가 생산하는 호알카리성 Protease의 부분정제 및 특성)

  • 안장우;오태광;박용하;박관하
    • Microbiology and Biotechnology Letters
    • /
    • v.18 no.4
    • /
    • pp.344-351
    • /
    • 1990
  • An alkalophilic microoganism producing a detergent-resistant alkaline protease was isolated from soil and identified as Baeiltus sp. The alkaline protease has been partially purified by ammonium sulfate fractionation, DEAE-Cellulose, CM-Cellulose and Sephdex G-100 column chromatography. The purified alkaline protease was highly active at pH 12-13 toward casein and stable at pH values from 6 to ll. The optimum temperature for the enzyme reaction was $55^{\circ}C$. The enzyme was completely inactivated by diisopropyl fluorophosphate (DFP) indicating that the enzyme was serine protease, but considerabiy stable in the presence of surface active agents.

  • PDF

Recent Progress on Sodium Vanadium Fluorophosphates for High Voltage Sodium-Ion Battery Application

  • Yuvaraj, Subramanian;Oh, Woong;Yoon, Won-Sub
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.1
    • /
    • pp.1-13
    • /
    • 2019
  • Na-ion batteries are being considered as promising cost-effective energy storage devices for the future compared to Li-ion batteries owing to the crustal abundance of Na-ion. However, the large radius of the Na ion result in sluggish electrode kinetics that leads to poor electrochemical performance, which prohibits the use of these batteries in real time application. Therefore, identification and optimization of the anode, cathode, and electrolyte are essential for achieving high-performance Na-ion batteries. In this context, the current review discusses the suitable high-voltage cathode materials for Na-ion batteries. According to a recent research survey, sodium vanadium fluorophosphate (NVPF) compounds have been emphasized for use as a high-voltage Na-ion cathode material. Among the fluorophosphate groups, $Na_3V_2(PO_4)_2F_3$ exhibited the high theoretical capacity ($128mAh\;g^{-1}$) and working voltage (~3.9 V vs. $Na/Na^+$) compared to the other fluorophosphates and $Na_3V_2(PO_4)_3$. Here, we have also highlighted the classification of Fluorophosphates, NVPF composite with carbonaceous materials, the appropriate synthesis methods and how these methods can enhance the electrochemical performance. Finally, the recent developments in NVPF for the application in energy storage devices and its outlook are summarized.

Electrochemical Characteristics of Nano-sized A2MnPO4F (A = Li, Na) as Cathode Materials for Lithium ion Batteries

  • Cho, Woosuk;Song, Jun Ho;Kim, Sang-Min;Kim, Dong-Jin;Kang, Min-Gu;Kim, Jeom-Soo;Kim, Young-Jun
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.113-118
    • /
    • 2013
  • Fluorophosphate, $Na_2MnPO_4F$ as new cathode material was synthesized by carbothermal treatment method. Prepared $Na_2MnPO_4F$ has particle size under 100 nm and residual carbon exists in surface of $Na_2MnPO_4F$. Additional carbon coating was performed in order to increase the electrochemical properties. Even capacity and overpotential were improved by carbon coating using mechanical ball milling, the reduced crystallinity limited the drastic improvement of the electrochemical properties. To solve this problem, re-heat treatment was involved to recover crystallinity and then notable improvement of electrochemical properties was obtained. Specific amount of $Li^+$ that participates in electrochemical $Li^+$ insertion / extraction reaction, was x = 1 in $Li_xNa_{2-x}MnPO_4F$ within the voltage range of 2.0 to 4.8 V. The doubled capacity by 2 electron reaction can be obtained when NMPF is charged to higher voltage over 4.8 V.

Purification and Characterization of Protease from Entomopathogenic Fungus Beauveria bassiana (곤충 병원성 곰팡이 Beauveria bassiana로부터 Protease의 정제와 특성)

  • Ko, Hwi-Jin;Kim, Hyun-Kyu;Kim, Beom-Gi;Kang, Sun-Chul;Kwon, Suk-Tae
    • Applied Biological Chemistry
    • /
    • v.40 no.5
    • /
    • pp.388-394
    • /
    • 1997
  • Extracellular protease (bassiasin I), from the culture filtrate of entomopathogenic fungus Beauveria bassiana ATCC7159, was successively purified by precipitation with ammonium sulfate followed by DEAE-Sephadex A-50, CM-cellulose and Hydroxyapatite column chromatography. A typical procedure provided 41-fold purification with 13.6% yield. The molecular weight of the purified pretense (bassiasin I) was found to be approximately 32,000 by SDS-PAGE. Isoelectric-focusing analysis of the enzyme showed a pI of 9.5. $NH_2-terminal$ sequence of the pretense showed homology with those of the fungal proteases. The enzyme has an optimal pH for activity at 10.5 and is stable over pH 5.0-11.0. The maximum activity of the enzyme was at $60-65^{\circ}C$, and approximately 20% activity remained at $60^{\circ}C$ after 120 min. The pretense was inhibited by phenylmethylsulfonyl fluoride (PMSF) and diisopropyl fluorophosphate (DIPF).

  • PDF

IL-17 and IL-17C Signaling Protects the Intestinal Epithelium against Diisopropyl Fluorophosphate Exposure in an Acute Model of Gulf War Veterans' Illnesses

  • Kristen M. Patterson;Tyler G. Vajdic;Gustavo J. Martinez;Axel G. Feller;Joseph M. Reynolds
    • IMMUNE NETWORK
    • /
    • v.21 no.5
    • /
    • pp.35.1-35.16
    • /
    • 2021
  • Gulf War Veterans' Illnesses (GWI) encompasses a broad range of unexplained symptomology specific to Veterans of the Persian Gulf War. Gastrointestinal (GI) distress is prominent in veterans with GWI and often presents as irritable bowel syndrome (IBS). Neurotoxins, including organophosphorus pesticides and sarin gas, are believed to have contributed to the development of GWI, at least in a subset of Veterans. However, the effects of such agents have not been extensively studied for their potential impact to GI disorders and immunological stability. Here we utilized an established murine model of GWI to investigate deleterious effects of diisopropyl fluorophosphate (DFP) exposure on the mucosal epithelium in vivo and in vitro. In vivo, acute DFP exposure negatively impacts the mucosal epithelium by reducing tight junction proteins and antimicrobial peptides as well as altering intestinal microbiome composition. Furthermore, DFP treatment reduced the expression of IL-17 in the colonic epithelium. Conversely, both IL-17 and IL-17C treatment could combat the negative effects of DFP and other cholinesterase inhibitors in murine intestinal organoid cells. Our findings demonstrate that acute exposure to DFP can result in rapid deterioration of mechanisms protecting the GI tract from disease. These results are relevant to suspected GWI exposures and could help explain the propensity for GI disorders in GWI Veterans.

Purification ana properties of alkaline pretense produced by Bacillus sp. KCTC 1723

  • 정영희;민영희;고영희
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 1986.12a
    • /
    • pp.532.2-532
    • /
    • 1986
  • Alkaline protease which is an important enzyme used in detergents, leather tanning and food industry was produced by alkalophilic bacterium, Bacillus sp. KCTC 1723 isolated from soil. The maximum productivity of the enzyme in alkaline medium containing 1% sodium bicarbonate was obtained by incubating for 3 days at 37$^{\circ}C$. The optimum pH of the enzyme was 11.5 and calcium ion was effective on stabilization of the enzyme at high temperature. The enzyme was not inhibited by metal chelating agent such as El)TA but inhibited by diisopropyl fluorophosphate. Purification of the enzyme was carried out DEAE- and CM-cellulose column chromatographies and molecular weight of the purified enzyme was determined

  • PDF

Purification and Characterization of an Intracellular Protease from Pseudomonas carboxydohydrogena (Pseudomonas charboxydohydrogena에서 분리 정제된 세포내 단백질 가수분해효소의 특성)

  • 이혜숙;김영민
    • Korean Journal of Microbiology
    • /
    • v.29 no.3
    • /
    • pp.167-171
    • /
    • 1991
  • An intracellular protease from cells of Pseudomonas carboxydohydrogena grown on nutrient broth was purified to better than 95% homogeneity in five steps using azocaseine as a substrate. The molecular weight of the native enzyme was determined to be 125, 000. Sodium dodecyl sulfate-gel electrophoresis revealedat least two non-identical subunits of molecular weight 70, 000 and 56, 000. The enzyme activity was completely ingibited by phenylmethylsulfonyl fluoride and diisopropyl fluorophosphate. The enzyme was also inhibited by $Mg^{2+}$ , $Zn^{2+}$ , $Cd^{2+}$, $Cu^{2+}$ , and $Fe^{2+}$ , but was stimulated by iodoacetamide. Maximal reaction rate of the enzyme was observed at pH8.0 and 30.deg.C. The isoelectric point of the enzyme was found to be 7.5. The enzyme was unable to hydrolyze carbon monoxide dehydrogenase.

  • PDF

Studies on AlF3-(Mg+Sr+Ba)F2-P2O5 Glasses I. Glass Forming Ranges of Fluorophosphate System and Its Various Properties (AlF3-(Mg+Sr+Ba)F2-P2O5계 유리에 관한 연구 I. 유리화 범위와 특성)

  • 김정은;이종근
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.2
    • /
    • pp.117-122
    • /
    • 1987
  • Glass forming ranges in the AlF3-(Mg+Sr+Ba)F2-P2O5 system are studied and ultraviolet transmission, infrared transmission, coefficient of refractive index, thermal expansion coefficient, density and chemical durability of the glasses are determined. Glass forming range is restricted MgF2 0-10wt%, SrF2 10-50wt%, BaF2 10-40wt% in this system. While BaF2 is substituted by SrF2, density and refractive index are decreased, micro hardness and thermal expansion coefficient are increased according to the increasing of SrF2 at fixed MgF2 contents. These samples represent high transmittance(93%) from 400nm to 3800nm and chemical durability of these samples show less than 0.3mg/$\textrm{cm}^2$$.$hy by weightloss.

  • PDF