DOI QR코드

DOI QR Code

Spectroscopic properties of Er3+/Yb3+ co-doped fluorophosphate glasses for NIR luminescence and optical temperature sensor applications

  • Linganna, K. (Optical Lens Research Center, Korea Photonics Technology Institute (KOPTI)) ;
  • Agawane, G.L. (Optical Lens Research Center, Korea Photonics Technology Institute (KOPTI)) ;
  • In, Jung-Hwan (Optical Lens Research Center, Korea Photonics Technology Institute (KOPTI)) ;
  • Park, June (Optical Lens Research Center, Korea Photonics Technology Institute (KOPTI)) ;
  • Choi, Ju H. (Optical Lens Research Center, Korea Photonics Technology Institute (KOPTI))
  • Received : 2018.04.18
  • Accepted : 2018.06.27
  • Published : 2018.11.25

Abstract

A series of $Er^{3+}/Yb^{3+}$ co-doped fluorophosphate glasses with varying $YbF_3$ concentration were prepared by a high temperature melt quenching technique. Absorption and emission cross-sections were determined by using the McCumber theory. The larger emission cross-section ($9.86{\times}10^{-21}cm^2$) and longer fluorescence lifetime (12.37 ms) were obtained for the $^4I_{13/2}{\rightarrow}^4I_{15/2}$ transition of ABS3Er4Yb glass. The sensitivity and temperature of the maximum sensitivity were evaluated by the fluorescence intensity ratio method from the measured upconversion spectra. The results were discussed and compared to the other reported glasses.

Keywords

Acknowledgement

Supported by : Defense Acquisition Programme Administration

References

  1. N.G. Boetti, G.C. Scarpignato, J. Lousteau, D. Pugliese, L. Bastard, J.-E. Broquin, D. Milanese, J. Opt. 17 (2015) 7 065705.
  2. R. Narro-Garcia, H. Desirena, E.F. Chillcce, L.C. Barbosa, E. Rodriguez, E. De la Rosa, Opt. Commun. 317 (2014) 93. https://doi.org/10.1016/j.optcom.2013.11.056
  3. C.Y. Cho, Y.C. Chen, Y.P. Huang, Y.J. Huang, K.W. Su, Y.F. Chen, Opt. Express 22 (2014) 7625. https://doi.org/10.1364/OE.22.007625
  4. S. Tanabe, C.R. Chim. 5 (2002) 815. https://doi.org/10.1016/S1631-0748(02)01449-2
  5. Y. Ledemi, M. El Amraoui, Jefferson L. Ferrari, Pier-Luc Fortin, S.J.L. Ribeiro, Y. Messaddeq, J. Am. Ceram. Soc. 96 (2013) 825. https://doi.org/10.1111/jace.12109
  6. S. Jiang, T. Luo, B.C. Hwang, G.N. Conti, M. Myers, D. Rhonehouse, S.H. Honkanen, N. Peyghambarian, Opt. Eng. 37 (1998) 3282. https://doi.org/10.1117/1.602013
  7. S. Taccheo, P. Laporta, Appl. Phys. Lett. 68 (1996) 2621. https://doi.org/10.1063/1.116201
  8. H. Desirena, E. De la Rosa, A. Shulzgen, S. Shabet, N. Peyghambarian, J. Phys. D: Appl. Phys. 41 (2008) 095102. https://doi.org/10.1088/0022-3727/41/9/095102
  9. F. Tang, H. Ye, Z. Su, Y. Bao, W. Guo, S. Xu, ACS Appl. Mater. Interfaces 9 (2017) 43790. https://doi.org/10.1021/acsami.7b14061
  10. Zhigang Zang, Appl. Opt. 52 (2013) 5701. https://doi.org/10.1364/AO.52.005701
  11. Zhigang Zang, Yujun Zhang, Appl. Opt. 51 (2012) 3424. https://doi.org/10.1364/AO.51.003424
  12. Zhi-Gang Zang, Wen-Xuan Yang, J. Appl. Phys. 109 (2011) 5 103106.
  13. S. Li, D. Tang, Z. Tian, X. Liu, T. Takeda, N. Hirosaki, F. Xu, Z. Huang, R.J. Xie, J. Mater. Chem. C. 00 (2016) 1.
  14. Zhi-Gang Zang, Yu-Jun Zhang, J. Mod. Opt. 59 (2012) 161. https://doi.org/10.1080/09500340.2011.622842
  15. A. Nommeots-Nomm, N.G. Boetti, T. Salminen, J. Massera, M. Hokka, L. Petit, J. Alloys Compd. 751 (2018) 224. https://doi.org/10.1016/j.jallcom.2018.04.101
  16. F. Huang, X. Liu, Y. Ma, S. Kang, L. Hu, D. Chen, Sci. Rep. 5 (2015) 8223. https://doi.org/10.1038/srep08223
  17. J. Zhang, S. Dai, S. Xu, G. Wang, L. Zhang, L. Hu, Chin. Phys. Lett. 2 (2004) 600.
  18. Y. Wang, J. Ohwaki, J. Appl. Phys. 74 (1993) 1272. https://doi.org/10.1063/1.354931
  19. F. Vetrone, J.-C. Boyer, J.A. Capobianco, A. Speghini, M. Bettinelli, Appl. Phys. Lett. 80 (2002) 1752. https://doi.org/10.1063/1.1458073
  20. G. Paez, M. Strojnik, Opt. Eng. 42 (2003) 1805. https://doi.org/10.1117/1.1571830
  21. W. Xu, Z. Zhang, W. Cao, Opt. Lett. 37 (2012) 4865. https://doi.org/10.1364/OL.37.004865
  22. T. Wu, R. Tong, L. Liao, L. Huang, S. Zhao, S. Xu, Sensors 17 (2017) 7 1253. https://doi.org/10.1109/JSEN.2016.2617878
  23. N. Vijaya, P. Babu, V. Venkatramu, C.K. Jayasankar, S.F. Leon-Luis, U.R. Rodriguez-Mendoza, I.R. Martin, V. Lavin, Sens. Actuators, B 186 (2013) 156. https://doi.org/10.1016/j.snb.2013.05.081
  24. S.F. Leon-Lius, U.R. Rodrriguez-Mendoza, I.R. Martin, Sens Actuators B 176 (2013) 1167. https://doi.org/10.1016/j.snb.2012.09.067
  25. Anurag Pandey, Sudipta Som, Vijay Kumar, Vinod Kumar, Kaushal Kumar, Vineet Kumar Rai, H.C. Swart, Sens. Actuators B 202 (2014) 1305. https://doi.org/10.1016/j.snb.2014.06.074
  26. S.F. Leon-Luis, U.R. Rodriguez-Mendoza, P. Haro-Gonzalez, I.R. Martin, V. Lavin, Sens. Actuators, B 174 (2012) 176. https://doi.org/10.1016/j.snb.2012.08.019
  27. B. Lai, L. Feng, J. Wang, Q. Su, Opt. Mater. 32 (2010) 1154. https://doi.org/10.1016/j.optmat.2010.03.023
  28. X. Yu, F. Song, C. Zou, L. Luo, C. Ming, W. Wang, Z. Cheng, L. Han, T. Sun, J. Tian, Opt. Mater. 31 (2009) 1645. https://doi.org/10.1016/j.optmat.2009.03.017
  29. C. Li, B. Dong, S. Li, C. Song, Chem. Phys. Lett. 443 (2007) 426. https://doi.org/10.1016/j.cplett.2007.06.081
  30. P. Haro-Gonzalez, S.F. Leon-Luis, S. Gonzalez-Perez, I.R. Martin, Mater. Res. Bull. 46 (2011) 1051. https://doi.org/10.1016/j.materresbull.2011.03.010
  31. V. Klinkov, V. Aseev, A. Semencha, E. Tsimerman, Sens. Actuators, A Phys. 277 (2018) 157.
  32. J. Cao, W. Chen, D. Xu, F. Hu, L. Chen, H. Guo, J. Lumin 194 (2018) 219. https://doi.org/10.1016/j.jlumin.2017.10.020
  33. S. Nian, Y. Zhang, W. Cao, Z. Wu, J. Tang, M. Li, N. Zhou, Y. Shu, J. Lumin 194 (2018) 440. https://doi.org/10.1016/j.jlumin.2017.10.036
  34. Y. Chen, G.H. Chen, X.Y. Liu, T. Yang, J. Lumin 195 (2018) 314. https://doi.org/10.1016/j.jlumin.2017.11.049
  35. J. Tang, Y. Huang, M. Sun, J. Gou, Y. Zhang, G. Li, Y. Kang, J. Yang, Z. Xiao, J. Lumin 197 (2018) 153. https://doi.org/10.1016/j.jlumin.2018.01.029
  36. H. Suo, X. Zhao, Z. Zhang, R. Shi, Y. Wu, J. Xiang, C. Guo, Nanoscale 10 (2018) 9245. https://doi.org/10.1039/C8NR01734D
  37. J. Jakutis, L. Gomes, C.T. Amancio, L.R.P. Kassab, J.R. Martinelli, N.U. Wetter, Opt. Mater. 33 (2010) 107. https://doi.org/10.1016/j.optmat.2010.08.021
  38. S.A. Wade, S.F. Collins, G.W. Baxter, Appl. Phys. Rev. 94 (2003) 4743. https://doi.org/10.1063/1.1606526
  39. Y. Hu, S. Jiang, G. Sorbello, T. Luo, Y. Ding, B.C. Hwang, H.J. Kim, H.J. Seo, N. Peyghambarian, Proc. SPIE 4282 (2001) 57.
  40. J.F. Philipps, T. Topfer, H. Ebendorff-Heidepriem, D. Ehrt, R. Sauerbrey, Appl. Phys. B 72 (2001) 399. https://doi.org/10.1007/s003400100515
  41. K. Linganna, G.L. Agawane, Ju H. Choi, J. Non-Cryst. Solids 471 (2017) 65. https://doi.org/10.1016/j.jnoncrysol.2017.05.012
  42. G.L. Agawane, K. Linganna, Jung-Hwan In, June Park, Ju H. Choi, Ceram. Int. 43 (2017) 11177. https://doi.org/10.1016/j.ceramint.2017.05.166
  43. H. Ebendorff-Heidepriem, D. Ehrt, M. Bettinelli, A. Speghini, Proc. SPIE 3622 (1999) 19.
  44. Y. Tian, T. Wei, F. Chen, X. Jing, J. Zhang, S. Xu, J. Quant. Spectrosc. Radiat. Transfer 133 (2014) 311. https://doi.org/10.1016/j.jqsrt.2013.08.016
  45. Y. Tian, R. Xu, L. Hu, J. Zhang, J. Opt. Soc. Am. B 28 (2011) 1638. https://doi.org/10.1364/JOSAB.28.001638
  46. L. Zhang, H. Sun, S. Xu, K. Li, L. Hu, Solid State Commun. 135 (2005) 449. https://doi.org/10.1016/j.ssc.2005.05.019
  47. S.W. Yung, H.J. Lin, Y.Y. Lin, R.K. Brow, Y.S. Lai, J.S. Horng, T. Zhang, Mater. Chem. Phys. 117 (2009) 29. https://doi.org/10.1016/j.matchemphys.2008.11.060
  48. Meisong Liao, Zhongchao Duan, Lili Hu, Yongzheng Fang, Lei Wen, J. Lumin 126 (2007) 139. https://doi.org/10.1016/j.jlumin.2006.06.009
  49. Li Tao, Zhang Qin-Yuan, Zhao Chun, Feng Zhou-Ming, Shi Dong-Mei, Deng Zai-De, Jiang Zhong-Hong, Chin. Phys. 14 (2005) 1250. https://doi.org/10.1088/1009-1963/14/6/034
  50. Li Tao, Zhang Qin-Yuan, Liu Yue-Hui, Zhang Jun-Jie, Deng Zai-De, Jiang Zhong-Hong, Chin. Phys. Lett. 21 (2004) 1147. https://doi.org/10.1088/0256-307X/21/6/047
  51. M.C.P. Tavares, E.B. da Costa, L.A. Bueno, A.S. Gouveia-Neto, Opt. Mater. 75 (2018) 733. https://doi.org/10.1016/j.optmat.2017.11.039
  52. I. Soltani, S. Hraiech, K. Horchani-Naifer, M. Ferid, Opt. Mater. 77 (2018) 161. https://doi.org/10.1016/j.optmat.2018.01.036
  53. Li Feng, Liang Bian, Jianan Nie, Huichao He, Chao Liu, Optik 169 (2018) 118. https://doi.org/10.1016/j.ijleo.2018.05.042
  54. B.R. Judd, Phys. Rev. 127 (1962) 750. https://doi.org/10.1103/PhysRev.127.750
  55. G.S. Ofelt, J. Chem. Phys. 37 (1962) 511. https://doi.org/10.1063/1.1701366
  56. W.T. Carnall, P.R. Fields, K. Rajnak, J. Chem. Phys. 49 (10) (1968) 4424. https://doi.org/10.1063/1.1669893
  57. Ju H. Choi, Frank G. Shi, Alfred Margaryan, Ashot Margaryan, Wytze van der Veer, J. Alloys Compd. 450 (2008) 540. https://doi.org/10.1016/j.jallcom.2007.07.094
  58. T.S. Goncalves, R.J. Moreira Silva, M. de Oliveira Junior, C.R. Ferrari, G.Y. Poirier, H. Eckert, A.S.S. de Camargo, Mater. Chem. Phys. 57 (2015) 45.
  59. M.J. Weber, Phys. Rev. 157 (1967) 262. https://doi.org/10.1103/PhysRev.157.262
  60. S. Tanabe, T. Ohyagi, N. Soga, T. Hanada, Phys. Rev. B 46 (1992) 3305. https://doi.org/10.1103/PhysRevB.46.3305
  61. Y. Nageno, H. Takebe, K. Morinaga, T. Izumitani, J. Non-Cryst. Solids 169 (1994) 288. https://doi.org/10.1016/0022-3093(94)90324-7
  62. D.E. McCumber, Phys. Rev. A 134 (2) (1964) A299. https://doi.org/10.1103/PhysRev.134.A299
  63. W.J. Miniscalco, R.S. Quimby, Opt. Lett. 16 (1991) 258. https://doi.org/10.1364/OL.16.000258
  64. J. Yang, S. Dai, Y. Zhou, L. Wen, Lili Hu, Z. Jiang, J. Appl. Phys. 93 (2003) 977. https://doi.org/10.1063/1.1531840
  65. T. Zou, Y. Zhang, Z. Wu, B. Chen, J. Rare Earths 33 (2015) 686. https://doi.org/10.1016/S1002-0721(14)60471-3
  66. D.C. Yeh, W.A. Sibley, M. Suscavage, M.G. Drexhage, J. Appl. Phys. 62 (1987) 266. https://doi.org/10.1063/1.339139

Cited by

  1. Stereochemically Active and Inactive Lone Pairs in Two Room-Temperature Phosphorescence Coordination Polymers of Pb2+ with Different Tricarboxylic Acids vol.58, pp.10, 2018, https://doi.org/10.1021/acs.inorgchem.9b00215
  2. Manifestation of Сoncentration Quenching of Fluoroaluminate Glasses Doped with Erbium vol.822, pp.None, 2018, https://doi.org/10.4028/www.scientific.net/kem.822.871
  3. Preparation and upconversion luminescent properties of Yb3+/Er3+ doped transparent glass-ceramics containing CaF2 nanocrystals vol.46, pp.16, 2020, https://doi.org/10.1016/j.ceramint.2020.07.008
  4. Investigation of spectral output of Er3+ and Yb3+/Er3+ doped TeO2-ZnO-BaO glasses for photonic applications vol.45, pp.8, 2018, https://doi.org/10.1039/d0nj05887d
  5. Superexchange Interaction Influence on the Faraday Effect in Terbium Fluorophosphate Glasses by Co-doping with Praseodymium, Dysprosium, and Holmium vol.125, pp.31, 2018, https://doi.org/10.1021/acs.jpcc.1c04713
  6. Thermal enhancement of the 2H11/24I15/2 up-conversion luminescence of Er3+-doped K2Yb(PO4)(MoO4) phosphors vol.9, pp.36, 2021, https://doi.org/10.1039/d1tc02442f
  7. Enhanced red up-conversion emission in Er3+/Yb3+ co-doped SrSnO3 for optical temperature sensing based on thermally and non-thermally coupled levels vol.244, pp.None, 2022, https://doi.org/10.1016/j.jlumin.2021.118687