Browse > Article
http://dx.doi.org/10.14478/ace.2020.1055

Hydrolysis of DFP Using Cu(II)-Lactic Acid and Cu(II)-LMWS-Chitosan Chelates  

Kye, Young-Sik (Department of Physics and Chemistry, Korea Military Academy)
Jeong, Keunhong (Department of Physics and Chemistry, Korea Military Academy)
Kim, Dongwook (Department of Physics and Chemistry, Korea Military Academy)
Publication Information
Applied Chemistry for Engineering / v.31, no.5, 2020 , pp. 475-480 More about this Journal
Abstract
Chelates synthesized with Cu(II) ion and lactic acid or chitosan were applied to the hydrolysis of organophosphate simulant, DFP (diisopropyl fluorophosphate). Under the homogeneous reaction condition, Cu(II)-lactic acid chelate hydrolyzed DFP with the half life time of 37.1 min. Cu(II)-LMWS chitosan chelate was synthesized with 1 kDa molecular weight of chitosan, which showed low solubility, and then crystallized. The half life time for hydrolyzing DFP using Cu(II)-LMWS chitosan was 32.9 h indicating that the reaction rate is enhanced as much as 16 times more than that of using 18 kDa chitosan-Cu(II) complex. Under the homogeneous reaction condition, the half life time of Cu(II)-LMWS chitosan was 8.75 h. Therefore, we found out that the solubility of Cu(II)-LMWS chitosan makes the difference in the reaction rate as much as 4 times.
Keywords
Hydrolysis; Chitosan; Lactic acid; Diisopropyl fluorophosphate; Chelate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. H. Jeong, J. M. Shim, W. Y. Chung, Y. S. Kye, and D. W. Kim, Diisopropyl fluorophosphate (DFP) degradation activity using transition metal-dipicolylamine complexes, Appl. Organomet. Chem., 32, e4383-4387 (2018).   DOI
2 Y. S. Kye, W. Y. Chung, D. W. Kim, Y. K. Park, S. U. Song, and K. H. Jeong, A study on the decomposition of DFP using Cu(II)-chitosan complex, J. KIMST, 15, 699-704 (2012).
3 R. W. Hay and N. Govan, The $[Cu(tmen)(OH)(OH_2)]^+$ promoted hydrolysis of 2,4-dinitrophenyl diethyl phosphate and O-isopropyl methylphosphonofluoridate (Sarin) (tmen = N,N,N',N'-tetramethyl- 1,2-diaminoethane), Polyhedron, 17, 2079-2085 (1998).   DOI
4 J. W. Nah and M. K. Jang, Spectroscopic characterization and preparation of low molecular, water-soluble chitosan with free-amine group by novel method, J. Polym. Sci. A: Polym. Chem., 40, 3796-3803 (2002).   DOI
5 O. A. C. Monteiro Jr. and C. Airoldi, Some thermodynamic data on copper-chitin and copper-chitosan biopolymer interactions, J. Colloid Interface Sci., 212, 212-219 (1999).   DOI
6 K. Yu, J. Ho, E. McCandlish, B. Buckley, R. Patel, Z. Li, and N. C. Shapley, Copper ion adsorption by chitosan nanoparticles and alginate microparticles for water purification applications, Colloid Surf. A: Physicochem. Eng. Asp., 425, 31-41 (2013).   DOI
7 S. Z. Bajwa and P. A. Lieberzeit, Recognition principle of $Cu^{2+}$- imprinted polymers - Assessing interactions by combined spectroscopic and mass-sensitive measurements, Sens. Actuators, B, 207, 976-980 (2015).   DOI
8 Y. Cai, L. Zheng, and Z. Fang, Selective adsorption of Cu(II) from an aqueous solution by ion imprinted magnetic chitosan microspheres prepared from steel pickling waste liquor, RSC Adv., 5, 97435-97445 (2015).   DOI
9 Y. C. Yang, J. A. Baker, and J. R. Ward, Decontamination of chemical warfare agents, Chem. Rev., 92, 1729-1743 (1992).   DOI
10 K. B. Kim, O. G. Tsay, D. A. Atwood, and D. G. Churchill, Destruction and detection of chemical warfare agents, Chem. Rev., 111, 5345-5403 (2011).   DOI
11 R. A. Moss, K. W. Alwis, and G. O. Bizzigotti, O-iodosobenzoate: catalyst for the micellar cleavage of activated esters and phosphates, J. Am. Chem. Soc., 105, 681-682 (1983).   DOI
12 H. Morales-Rojas and R. A. Moss, Phosphorolytic reactivity of o-iodosylcarboxylates and related nucleophiles, Chem. Rev., 102, 2497-2521 (2002).   DOI
13 M. C. de Koning, M. van Grol, and T. Breijaert, Degradation of paraoxon and the chemical warfare agents VX, tabun, and soman by the metal-organic frameworks $UiO-66-NH_2$, MOF-808, NU-1000, and PCN-777, Inorg. Chem., 56, 11804-11809 (2017).   DOI
14 R. L. Gustafson, S. Chaberek Jr., and A. E. Martell, A kinetic study of the copper(II) chelate catalyzed hydrolysis of diisopropyl phosphorofluoridate, J. Am. Chem. Soc., 85, 598-601 (1963).   DOI
15 Y. S. Kye, K. H. Jeong, and W. Y. Chung, Decomposition studies of DFP using transition metal catalysts, Appl. Chem. Eng., 21, 1-5 (2010).
16 N. Sharma and R. Kakkar, Recent advancements on warfare agents/metal oxides surface chemistry and their simulation study, Adv. Mater Lett., 4, 508-521 (2013).   DOI
17 S. Y. Moon, E. Proussaloglou, G. W. Peterson, J. B. DeCoste, M. G. Hall, A. J. Howarth, J. T. Hupp, and O. K. Farha, Detoxification of chemical warfare agents using a $Zr_6$-based metal-organic framework/polymer mixture, Chem. Eur. J., 22, 14864-14868 (2016).   DOI
18 Y. Liu, A. J. Howarth, N. A. Vermeulen, S. Y. Moon, J. T. Hupp, and O. K. Farha, Catalytic degradation of chemical warfare agents and their simulants by metal-organic frameworks, Coord. Chem. Rev., 346, 101-111 (2017).   DOI
19 M. N. V. R. Kumar, R. A. A. Muzzarelli, C. Muzzarelli, H. Sashiwa, and A. J. Domb, Chitosan chemistry and pharmaceutical perspectives, Chem. Rev., 104, 6017-6084 (2004).   DOI
20 T. Islamoglu, A. Atilgan, S. Y. Moon, G. W. Peterson, J. B. DeCoste, M. Hall, J. T. Hupp, and O. K. Farha, Cerium(IV) vs zirconium(IV) based metal-organic frameworks for detoxification of a nerve agent, Chem. Mater., 29, 2672-2675 (2017).   DOI
21 R Schmuhl, H. M. Krieg and K Keizer, Adsorption of Cu(II) and Cr(VI) ions by chitosan: Kinetics and equilibrium studies, Water SA, 27, 1-7 (2001).
22 R. Sulakova, R. Hrdina, and G. M. B. Soares, Oxidation of azo textile soluble dyes with hydrogen peroxide in the presence of Cu(II)-chitosan heterogeneous catalysts, Dyes Pigm., 73, 19-24 (2007).   DOI
23 P. McGowan, C. Rayner and R. Blackburn, The combined synthesis and coloration of poly(lactic acid), Angew. Chem. Int. Ed., 50, 291-294 (2011).   DOI
24 S. L. Bartelt-Hunt, D. R. U. Knappe and M. A. Barlaz, A review of chemical warfare agent simulants for the study of environmental behavior, Crit. Rev. Environ. Sci. Technol., 38, 112-136 (2008).   DOI