• 제목/요약/키워드: Fluorocarbon plasma

검색결과 40건 처리시간 0.028초

PECVD와 ICP에 의해 증착된 불화유기박막의 나노트라이볼러지 특성 비교분실 (Comparative Analysis of Nanotribological Characterization of Fluorocarbon Thin Film by PECVD and ICP)

  • 김태곤;이수연;박진구;신형재
    • 한국마이크로전자및패키징학회:학술대회논문집
    • /
    • 한국마이크로전자및패키징학회 2001년도 추계 기술심포지움
    • /
    • pp.226-229
    • /
    • 2001
  • 현재 초소형 정밀기계(MEMS;Microelectromechanical System) 소자의 가장 큰 문제점으로 대두되고 있는 점착현상을 방지하기 위하여 불화유기박막을 증착하였다. Octafluorocyclobutane(C$_4$F$_{8}$)을 소스가스를 PECVD (Plasma Enhanced CVD)와 ICP (Inductively Coupled Plasma)를 이용하여 증착하였다. 여기에 Ar을 첨가하여 플라즈마의 반응성을 높여주었다. 형성된 불화유기박막의 나노트라이볼러지 특성을 살펴보기 위하여 AFM을 통하여 증착시킨 시편의 topography를 살펴보았다. 그리고 박막의 antiadhesion의 정도를 살펴보기 위하여 cantilever와 박막의 표면 사이에 존재하는 interaction force를 측정 하였고 AFM의 force curve mode를 이용하였다 PECVB를 이용하여 증착된 박막은 ICP를 이용한 박막보다 균일하지 못한 박막을 보였으며 attractive force가 강한 것으로 사료된다.

  • PDF

Surface Analysis of Aluminum Bonding Pads in Flash Memory Multichip Packaging

  • Son, Dong Ju;Hong, Sang Jeen
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권4호
    • /
    • pp.221-225
    • /
    • 2014
  • Although gold wire bonding techniques have already matured in semiconductor manufacturing, weakly bonded wires in semiconductor chip assembly can jeopardize the reliability of the final product. In this paper, weakly bonded or failed aluminum bonding pads are analyzed using X-ray photoelectron spectroscopy (XPS), Auger electron Spectroscopy (AES), and energy dispersive X-ray analysis (EDX) to investigate potential contaminants on the bond pad. We found the source of contaminants is related to the dry etching process in the previous manufacturing step, and fluorocarbon plasma etching of a passivation layer showed meaningful evidence of the formation of fluorinated by-products of $AlF_x$ on the bond pads. Surface analysis of the contaminated aluminum layer revealed the presence of fluorinated compounds $AlOF_x$, $Al(OF)_x$, $Al(OH)_x$, and $CF_x$.

Field Emission Characteristics a-C:F:N Film Deposited by Inductively Coupled Plasma Chemical Vapor Deposition

  • Jae, Chung-Suk;Jung, Han-Eun;Jang Jin
    • 한국진공학회지
    • /
    • 제7권s1호
    • /
    • pp.134-139
    • /
    • 1998
  • Amorphous fluorocarbon (a-C:F) is of interest for low dielectric interlayer material, but in this work we applied this material to FED field emitter. N-doped a-C:F films were deposited by inductively coupled plasma chemical vapor deposition (ICPCVD). The Raman spectra were measured to study the film structure and inter-band optical absorption coefficients were measured using Perkin-Elmer UV-VIS-IR spectrophotometer and optical band gap was obtained using Tauc's plot. XPS spectrum and AFM image were investigated to study bond structure and surface morphology. Current-electric field(I-E) characteristic of the film was measured for the characterization of electron emission properties. The optimum doping concentration was found to be [N2]/[CF4]=9% in the gas phase. The turn-on field and the emission current density at $[N_2]/[CF_4]$=9% were found to be 7.34V/$\mu\textrm{m}$ and 16 $\mu\textrm{A}/\textrm{cm}^2$ at 12.8V/$\mu\textrm{m}$, respectively.

  • PDF

W-WC의 Spark Plasma Sintering에 의한 W2C의 합성 및 식각특성 (Synthesis of W2C by Spark Plasma Sintering of W-WC Powder Mixture and Its Etching Property)

  • 오규상;이성민;류성수
    • 한국분말재료학회지
    • /
    • 제27권4호
    • /
    • pp.293-299
    • /
    • 2020
  • W2C is synthesized through a reaction-sintering process from an ultrafine-W and WC powder mixture using spark plasma sintering (SPS). The effect of various parameters, such as W:WC molar ratio, sintering temperature, and sintering time, on the synthesis behavior of W2C is investigated through X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM) analysis of the microstructure, and final sintered density. Further, the etching properties of a W2C specimen are analyzed. A W2C sintered specimen with a particle size of 2.0 ㎛ and a relative density over 98% could be obtained from a W-WC powder mixture with 55 mol%, after SPS at 1700℃ for 20 min under a pressure of 50 MPa. The sample etching rate is similar to that of SiC. Based on X-ray photoelectron spectroscopy (XPS) analysis, it is confirmed that fluorocarbon-based layers such as C-F and C-F2 with lower etch rates are also formed.

3D feature profile simulation for nanoscale semiconductor plasma processing

  • Im, Yeon Ho
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.61.1-61.1
    • /
    • 2015
  • Nanoscale semiconductor plasma processing has become one of the most challenging issues due to the limits of physicochemical fabrication routes with its inherent complexity. The mission of future and emerging plasma processing for development of next generation semiconductor processing is to achieve the ideal nanostructures without abnormal profiles and damages, such as 3D NAND cell array with ultra-high aspect ratio, cylinder capacitors, shallow trench isolation, and 3D logic devices. In spite of significant contributions of research frontiers, these processes are still unveiled due to their inherent complexity of physicochemical behaviors, and gaps in academic research prevent their predictable simulation. To overcome these issues, a Korean plasma consortium began in 2009 with the principal aim to develop a realistic and ultrafast 3D topography simulator of semiconductor plasma processing coupled with zero-D bulk plasma models. In this work, aspects of this computational tool are introduced. The simulator was composed of a multiple 3D level-set based moving algorithm, zero-D bulk plasma module including pulsed plasma processing, a 3D ballistic transport module, and a surface reaction module. The main rate coefficients in bulk and surface reaction models were extracted by molecular simulations or fitting experimental data from several diagnostic tools in an inductively coupled fluorocarbon plasma system. Furthermore, it is well known that realistic ballistic transport is a simulation bottleneck due to the brute-force computation required. In this work, effective parallel computing using graphics processing units was applied to improve the computational performance drastically, so that computer-aided design of these processes is possible due to drastically reduced computational time. Finally, it is demonstrated that 3D feature profile simulations coupled with bulk plasma models can lead to better understanding of abnormal behaviors, such as necking, bowing, etch stops and twisting during high aspect ratio contact hole etch.

  • PDF

Etch Characteristics of $SiO_2$ by using Pulse-Time Modulation in the Dual-Frequency Capacitive Coupled Plasma

  • 전민환;강세구;박종윤;염근영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.472-472
    • /
    • 2011
  • The capacitive coupled plasma (CCP) has been extensively used in the semiconductor industry because it has not only good uniformity, but also low electron temperature. But CCP source has some problems, such as difficulty in varying the ion bombardment energy separately, low plasma density, and high processing pressure, etc. In this reason, dual frequency CCP has been investigated with a separate substrate biasing to control the plasma parameters and to obtain high etch rate with high etch selectivity. Especially, in this study, we studied on the etching of $SiO_2$ by using the pulse-time modulation in the dual-frequency CCP source composed of 60 MHz/ 2 MHz rf power. By using the combination of high /low rf powers, the differences in the gas dissociation, plasma density, and etch characteristics were investigated. Also, as the size of the semiconductor device is decreased to nano-scale, the etching of contact hole which has nano-scale higher aspect ratio is required. For the nano-scale contact hole etching by using continuous plasma, several etch problems such as bowing, sidewall taper, twist, mask faceting, erosion, distortions etc. occurs. To resolve these problems, etching in low process pressure, more sidewall passivation by using fluorocarbon-based plasma with high carbon ratio, low temperature processing, charge effect breaking, power modulation are needed. Therefore, in this study, to resolve these problems, we used the pulse-time modulated dual-frequency CCP system. Pulse plasma is generated by periodical turning the RF power On and Off state. We measured the etch rate, etch selectivity and etch profile by using a step profilometer and SEM. Also the X-ray photoelectron spectroscopic analysis on the surfaces etched by different duty ratio conditions correlate with the results above.

  • PDF

글로우방전을 이용한 폴리에스테르 직물의 투습방수성 개질 (Water Repellent Finish of Polyester Fabric Using Glow Discharge Treatment)

  • 김태년
    • 한국의류학회지
    • /
    • 제25권1호
    • /
    • pp.154-161
    • /
    • 2001
  • We have treated polyester fabric with $CF_4,\;C_2F_6,\;SF_6\;and\;C_3F_6$ glow discharge plasmas to develop functional fabrics which preserve moisture transportation and water proofing nature. Modified properties were evaluated by water vapor permeation rate and breakthrough water pressure. The change of surface morphology was observed by SEM. Fiber interstice of the plasma treated fabric was calculated as $0.32{\mu}{\textrm}{m}$, and this value was sufficiently ideal as water repellent material. The moisture transportation of ${CF_4}-treated$ fabric was good as much as untreated fabric, and those of $C_2$F(sub)6-treated, SF(sub)6-treated fabrics were reduced by 1~3%, and that of ${C_3F_6}-treated$ fabric was reduced by 15%. The best treatment condition were 0.06 torr 120 seconds in $CF_4$, 0.05 torr 30 seconds in $SF_6$, 0.08~0.15 torr 90 seconds in $SF_6$ and 0.1 torr 45 seconds in $C_3F_6$ respectively. The grade of moisture transportation effect was $CF_4>C_2F_6>SF_6>>C_3F_6$, and water proofing effect was $C_2F_6{\approx}CF_4>C_3F_6>SF_6$. It was observed by SEM that the thin film was formed on the surface of the treated substrate by the fluorocarbon plasma treatment.

  • PDF

높은 A/R의 콘택 산화막 에칭에서 바닥모양 변형 개선에 관한 연구 (A Study on The Improvement of Profile Tilting or Bottom Distortion in HARC)

  • 황원태;김길호
    • 한국전기전자재료학회논문지
    • /
    • 제18권5호
    • /
    • pp.389-395
    • /
    • 2005
  • The etching technology of the high aspect ratio contact(HARC) is necessary at the critical contact processes of semiconductor devices. Etching the $SiO_{2}$ contact hole with the sub-micron design rule in manufacturing VLSI devices, the unexpected phenomenon of 'profile tilting' or 'bottom distortion' is often observed. This makes a short circuit between neighboring contact holes, which causes to drop seriously the device yield. As the aspect ratio of contact holes increases, the high C/F ratio gases, $C_{4}F_{6}$, $C_{4}F_{8}$ and $C_{5}F_{8}$, become widely used in order to minimize the mask layer loss during the etching process. These gases provide abundant fluorocarbon polymer as well as high selectivity to the mask layer, and the polymer with high sticking yield accumulates at the top-wall of the contact hole. During the etch process, many electrons are accumulated around the asymmetric hole mouth to distort the electric field, and this distorts the ion trajectory arriving at the hole bottom. These ions with the distorted trajectory induce the deformation of the hole bottom, which is called 'profile tilting' or 'bottom distortion'. To prevent this phenomenon, three methods are suggested here. 1) Using lower C/F ratio gases, $CF_{4}$ or $C_{3}F_{8}$, the amount of the Polymer at the hole mouth is reduced to minimize the asymmetry of the hole top. 2) The number of the neighboring holes with equal distance is maximized to get the more symmetry of the oxygen distribution around the hole. 3) The dual frequency plasma source is used to release the excessive charge build-up at the hole mouth. From the suggested methods, we have obtained the nearly circular hole bottom, which Implies that the ion trajectory Incident on the hole bottom is symmetry.

글로벌 모델에 의한 저온 고밀도 플루오로카본 플라즈마 특성의 공정변수 의존성 해석 (Analysis of Process Parameter dependency on the characteristics of high density fluoro carbon plasma using global model)

  • 이호준;태흥식
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.879-881
    • /
    • 1999
  • Radical and ion densities in a CF4 plasma have been calculated as a function of input power density. 9as pressure and feed gas flow rate using simple 0 dimensional global model. Fluorine atom is found to be the most abundant neutral particle. Highly fragmented species such as CF and CF+ become dominant neutral and ionic radical at the high power condition. As the pressure increases. ion density increases but ionization rate decreases due to the decrease in electron temperature. The fractional dissociation of CF4 feed gas decreases with pressure after increasing at the low pressure range. Electron density and temperature are almost independent of flow rate within calculation conditions studied. The fractional dissociation of CF4 monotonically decreases with flow rate. which results in increase in CF3 and decrease in CF density. The calculation results show that the SiO2 etch selectivity improvement correlates to the increase in the relative density of fluorocarbon ion and neutral radicals which has high C/F ratio.

  • PDF

초소수성 표면 개질에 미치는 마이크로 나노 복합구조의 영향 (The Effect of Micro Nano Multi-Scale Structures on the Surface Wettability)

  • 이상민;정임덕;고종수
    • 대한기계학회논문집A
    • /
    • 제32권5호
    • /
    • pp.424-429
    • /
    • 2008
  • Surface wettability in terms of the size of the micro nano structures has been examined. To evaluate the influence of the nano structures on the contact angles, we fabricated two different kinds of structures: squarepillar-type microstructure with nano-protrusions and without nano-protrusions. Microstructure and nanostructure arrays were fabricated by deep reactive ion etching (DRIE) and reactive ion etching (RIE) processes, respectively. And plasma polymerized fluorocarbon (PPFC) was finally deposited onto the fabricated structures. Average value of the measured contact angles from microstructures with nanoprotrusions was $6.37^{\circ}$ higher than that from microstructures without nano-protrusions. This result indicates that the nano-protrusions give a crucial effect to increase the contact angle.