Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.4.221

Surface Analysis of Aluminum Bonding Pads in Flash Memory Multichip Packaging  

Son, Dong Ju (Department of Electronic Engineering, Myongji University)
Hong, Sang Jeen (Department of Electronic Engineering, Myongji University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.4, 2014 , pp. 221-225 More about this Journal
Abstract
Although gold wire bonding techniques have already matured in semiconductor manufacturing, weakly bonded wires in semiconductor chip assembly can jeopardize the reliability of the final product. In this paper, weakly bonded or failed aluminum bonding pads are analyzed using X-ray photoelectron spectroscopy (XPS), Auger electron Spectroscopy (AES), and energy dispersive X-ray analysis (EDX) to investigate potential contaminants on the bond pad. We found the source of contaminants is related to the dry etching process in the previous manufacturing step, and fluorocarbon plasma etching of a passivation layer showed meaningful evidence of the formation of fluorinated by-products of $AlF_x$ on the bond pads. Surface analysis of the contaminated aluminum layer revealed the presence of fluorinated compounds $AlOF_x$, $Al(OF)_x$, $Al(OH)_x$, and $CF_x$.
Keywords
Wire bonding failure; Multichip package; Fluorine contamination; Plasma etching;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 M. Karnezos, IEEE IEMT, 64 (2004) [DOI: http://dx.doi.org/10.1109/IEMT.2004.1321633].   DOI
2 EIA/JEDX22-B116, JEDEC, Solid State Technology Division, Electronic Industries Alliance (Arlington, VA, 1998).
3 R. J. Coyle, A. J. Serafino, and P. P. Solan, Proc. 27th IEEE/SEMI Int. Elect. Manufac. Tech. Symp., (San Francisco, CA, 2002). [DOI: http://dx.doi.org/10.1109/IEMT.2002.1032754].   DOI
4 G. Y. Clatterbaugh, J. A. Weiner, and H. K. Charles, Jr., IEEE Trans. TCHMT, 7, 349 (1984). [DOI: http://dx.doi.org/10.1109/TCHMT.1984.1136367].   DOI
5 Physical Electronics, http://www.phi.com/surface-analysisapplications/semiconductor.html.
6 C. Jones, W. Crane, R. L. Gilchrist, and R. C. Langley, US Patent, US005380401 A (1995).
7 S. H. Hong, W. Y. Choi, J. Park, and S. Hong, Trans. Electr. Electron. Mater., 10, 71 (2009).   DOI   ScienceOn
8 N. Khan, V. S. Rao, S. Lim, H. We, V. Lee, Z. X. Wu, Y.Rui, L. Ebin, Ranganathan, T. Chai, V. Kripesh and J. Lau, IEEE Proc. ECTC (FL, 550, 2008). [DOI: http://dx.doi.org/10.1109/ECTC.2008.4550027].   DOI
9 M. Karnezos, US Patent, 20060138649 A1 (2006).
10 K. Lee and S. Hong, US Patent, 7,781,325 B2 (2010).
11 K. Sakuma, P. S. Andry, C. K. Tsang, S. L. Wright, B. Dang, C. S. Patel, B. C. Webb, J. Maria, E. J. Sprogis, S. K. Kang, R. J. Polastre, R. R. Horton, and J. U. Knickerbocker, IBM. J. Res. & Dev., 52, 611 (2008). [DOI: http://dx.doi.org/10.1147/JRD.2008.5388567].   DOI