• Title/Summary/Keyword: Fluoride removal

Search Result 97, Processing Time 0.033 seconds

A STUDY ON ELECTRON-MICROSCOPIC FINDINGS AFTER ACID ETCHING ON ENAMEL AND DENTIN (법랑질(琺瑯質)과 상아질(象牙質)의 산처리후(酸處理後)의 전자현미경(電子顯微鏡) 소견(所見)에 관(關)한 연구(硏究))

  • Kim, Yung-Hai
    • Restorative Dentistry and Endodontics
    • /
    • v.9 no.1
    • /
    • pp.115-119
    • /
    • 1983
  • The purpose of this study was to compare the solubility of enamel and dentin to an etchant after fluoride application. Specimens were collected from extracted anterior and bicuspid and each tooth was cut into several pieces. These specimen were allocated in 7 group; 1%, 2%, 3% NaF, 1%, 8%, 20% $SnF_2$, and control group. Five specimens in each group was exposed to pre-determined fluoride solution for 3 minutes, and washed with running water. These specimens were etched by Hipol (commercial label) etchant for 30 seconds. Following are the findings obtained through S.E.M. 1. All specimens with acid etching revealed preferential removal of prism periphery leaving prism core. 2. Specimens treated with 1%, 2% NaF solution showed that the shape of prism tip was thin and sharp like a needle. The case of 3% NaF showed rather round shape at prism end. 3.1% of $SnF_2$ case showed similar findings with the control group but 8% and 20% $SnF_2$ case revealed needle shape at the prism and was less clear than NaF case. Preferential removal of prism periphery was partialy observed and un decalcified area is fused to prism forming reidge. 4. Dentine treated by fluoride compound in low concentration showed the orifice of dentinal tubule was clearly enlarged whereas in high concentration the orifice was not widened.

  • PDF

Preparation of Carbon Electrodes Using Activated Carbon Fibers and Their Performance Characterization for Capacitive Deionization Process (활성탄소섬유를 이용한 탄소전극의 제조 및 축전식 탈염공정에서의 성능평가)

  • Park, Cheol Oh;Oh, Ju Seok;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.28 no.4
    • /
    • pp.271-278
    • /
    • 2018
  • In this study, the carbon electrodes using activated carbon fibers (ACFs) were prepared for the capacitive deionization process. The Polyvinylidene fluoride (PVDF) was used as the binder and the mixed ACFs with proper solvent was cast on the commercial graphite sheets to prepare the carbon electrodes. At this moment, the different particle sizes of ACFs were applied and the mixing ratio of solvent, PVDF and ACFs, 80 : 2 : 18 and 80 : 5 : 15, were used for the electrode preparation. Then their salt removal efficiencies were characterized under the various operating conditions, adsorption potential and time, desorption potential and time, concentration of feed NaCl solution and flow rate as well. Typically, the salt removal efficiency of 53.6% were obtained at the particle size below $32{\mu}m$, mixing ratio 80 : 2 : 18, adsorption 1.2 V and 3 min, desorption -0.1V and 1 min, and 15 mL/min flow rate of NaCl 100 mg/L.

Evaluation of Fluoride Removal Effect with Growth of Attached Microbial Community in Middle and Small Stream (중·소하천에서 부착미생물군집의 성장에 따른 불소 제거 효과 평가)

  • Kim, Tae-Kyung;Ryu, Seo-Young;Park, Yoon-A;Lee, Jong-Jun;Joo, Kwang-Jin;Chang, Kwang-Hyeon;Oh, Jong-Min
    • Journal of Environmental Impact Assessment
    • /
    • v.27 no.6
    • /
    • pp.595-603
    • /
    • 2018
  • This study was conducted to understand the growth of attached microbial community in small and medium streams of Gyeonggi-do and the removal efficiency of fluoride with changes in growth. The sites monitoring were carried out for 12 weeks at the P1 and P2(P1 is the point where the discharge water flows. P2 is the downstream point of about 2 km flow), and investigated the water quality and the biomass analysis of the attached microbial community. The growth of the attached microbial community increased up to the 7th investigation, and it was observed that detachment phenomenon occurred. Influencing factors about growth of the attached microbial community were flow rate, velocity, and organic material(T-N & T-P). Meanwhile, fluoride content of attached microbial community also tended to increase until the 7th investigation, and decrease from the 8th. It is assumed that fluoride content has also be reduced with the detachment phenomenon of the attached microbial community. It is expected that this will contribute to the evaluation and management of the use of attached microbial community as a means of stream management. The application of techniques using the attached microbial community should include basic investigation of factors that may affect the growth of the attached microbial community and replacement of the attachment plate according to the time of removal.

A Study of Fluoride and Arsenic Adsorption from Aqueous Solution Using Alum Sludge Based Adsorbent (알럼 슬러지 기반 흡착제를 이용한 수용액상 불소 및 비소 흡착에 관한 연구)

  • Lee, Joon Hak;Ji, Won Hyun;Lee, Jin Soo;Park, Seong Sook;Choi, Kung Won;Kang, Chan Ung;Kim, Sun Joon
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.667-675
    • /
    • 2020
  • An Alum-sludge based adsorbent (ASBA) was synthesized by the hydrothermal treatment of alum sludge obtained from settling basin in water treatment plant. ASBA was applied to remove fluoride and arsenic in artificially-contaminated aqueous solutions and mine drainage. The mineralogical crystal structure, composition, and specific surface area of ASBA were identified. The result revealed that ASBA has irregular pores and a specific surface area of 87.25 ㎡ g-1 on its surface, which is advantageous for quick and facile adsorption. The main mineral components of the adsorbent were found to be quartz(SiO2), montmorillonite((Al,Mg)2Si4O10(OH)2·4H2O) and albite(NaAlSi3O8). The effects of pH, reaction time, initial concentration, and temperature on removal of fluoride and arsenic were examined. The results of the experiments showed that, the adsorbed amount of fluoride and arsenic gradually decreased with increasing pH. Based on the results of kinetic and isotherm experiments, the maximum adsorption capacity of fluoride and arsenic were 7.6 and 5.6 mg g-1, respectively. Developed models of fluoride and arsenic were suitable for the Langmuir and Freundlich models. Moreover, As for fluoride and arsenic, the increase rate of adsorption concentration decreased after 8 and 12 hr, respectively, after the start of the reaction. Also, the thermodynamic data showed that the amount of fluoride and arsenic adsorbed onto ASBA increased with increasing temperature from 25℃ to 35℃, indicating that the adsorption was endothermic and non-spontaneous reaction. As a result of regeneration experiments, ASBA can be regenerated by 1N of NaOH. In the actual mine drainage experiment, it was found that it has relatively high removal rates of 77% and 69%. The experimental results show ASBA is effective as an adsorbent for removal fluoride and arsenic from mine drainage, which has a small flow rate and acid/neutral pH environment.

A Study on Surface Characteristics and Stability of Implants Treated with Anodic Oxidation and Fluoride Incorporation (양극 산화와 불소 화합물로 처리한 임플랜트의 표면 특성 및 골유착 안정성에 관한 연구)

  • Lim, Jae-Bin;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.22 no.4
    • /
    • pp.349-365
    • /
    • 2006
  • State of problem : A number of investigation about increase of surface area via various surface treatments and modification of surface constituent have been carried out. Purpose : The surface characteristics and stability of implants treated with anodic oxidation, fluoride ion incorporation, and groups treated with both methods were evaluated. Material and method : Specimens were divided into six groups, group 1 was the control group with machined surface implants, groups 2 and 3 were anodic oxidized implants (group 2 was treated with 1M $H_2SO_4$ and 185V, group 3 was treated with 0.25M $H_2SO_4$ and $H_3PO_4$ and 300V). Groups 4, 5 and 6 were treated with fluoride. Group 4 was machined implants treated with 0.1% HF, and groups 5 and 6 were groups 2 and 3 treated with 10% NaF respectively. Using variable methods, implant surface characteristics were observed, and the implant stability was evaluated on rabbit tibia at 0, 4, 8 and 12 weeks. Result : 1. In comparison of the surface characteristics of anodic oxidized groups, group 2 displayed delicate and uniform oxidation layer with small pore size containing Ti, C, O and showed mainly rutile, but group 3 displayed large pore size and irregular oxidation layer with many crators. 2. In comparison of the surface characteristics of fluoride treated groups 4, 5, 6 and non-fluoride treated groups 1, 2, 3, the configurations were similar but the fluoride treated groups displayed rougher surfaces and composition analysis revealed fluoride in groups 4, 5, 6. 3. The fluoride incorporated anodic oxidized groups showed the highest resonance frequency values and removal torque values, and the values decreased in the order of anodic oxidized groups, fluoride treated group, control group. 4. According to implant stability tests, group 2 and 3 showed significantly higher values than the control group (P<.05). The fluoride treated groups showed relatively higher values than the non fluoride treated groups and there were significant difference between group 4 and group 1 (P<.05). Conclusion : From the results above, it can be considered that the anodic oxidation method is an effective method to increase initial bone stability and osseointegration and fluoride containing implant surfaces enhance new bone formation. Implants containing both of these methods should increase osseointegration, and reduce the healing period.

Effect of Calcium Sources for the Treatment of Wastewater Containing High Fluoride (고농도의 불소함유폐수 처리시 칼슘원에 따른 영향)

  • Kim, Seung-Ha;Kim, Keum-Yong;Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.5
    • /
    • pp.307-313
    • /
    • 2011
  • As production of LCD increases, it has become necessary to find an economically efficient way of treating LCD wastewater with high concentration of fluoride. This study focuses on the calcium sources : $CaCl_2$, $Ca(OH)_2$ and $CaCO_3$ for the treatment of the LCD wastewater including high concentration of fluoride. Of course considering removal efficiency and economical aspect, study is continued. Then this study have objective giving aid to field. Consequently, each calcium source's removal efficiency was measured in various pH, calcium dosage, reaction time, and mixing intensity. The optimum operational conditions for $CaCl_2$ were found to be pH of 7, calcium dosage of 0.4[Ca]/[F] (mol / mol), 1 hr of operation and 200 rpm of mixing intensity. For $Ca(OH)_2$, they were pH of 7, calcium dosage of 30 mL/L, 1 hr of operation, and 200 rpm of mixing intensity. While $CaCO_3$ had operational conditions of pH of 4, calcium dosage of 30 mL/L, 1 hr operation and 200 rpm of mixing intensity. But it is recommended to use calcium sources according to various field conditions.

Removal of Fluoride Using Thermally Treated Activated Alumina (고온 처리된 활성알루미나를 이용한 불소 제거)

  • Park, Seong-Jik;Kim, Jae-Hyeon;Lee, Chang-Gu;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.986-993
    • /
    • 2010
  • In this study, sorption characteristics of thermally treated activated alumina (AA) for fluoride were investigated. Sorption experiments have been conducted in equilibrium and kinetic batch conditions. Also, effects of solution pH and anions on fluoride removal have been observed. The properties of thermally treated ( $700^{\circ}C$) activated alumina (AA700) and untreated activated alumina (UAA) were compared using field-emission scanning electron microscope, energy-dispersive spectrometry, X-ray diffractometer (XRD) analysis, and Brunauer-Emmett-Teller (BET) analysis. From the experiments using AA thermally treated at different temperatures (100, 300, 500, $700^{\circ}C$), it was found that at high fluoride concentrations (50, 100, 200 mg/L) the sorption capacity of thermally treated AA increased with increasing thermal treatment temperature. At an initial fluoride concentration of 200 mg/L, the sorption capacity of AA700 was 3.67 times greater than that of UAA. The BET analysis showed that the specific surface area of UAA was about 2 times larger than that of AA700. The XRD analysis indicated that UAA was composed of both boehmite (AlOOH) and bayerite ($Al(OH)_3$) while AA700 was $Al_2O_3$. The reason that fluoride sorption capacity of AA700 increased despite of decrease in specific surface area compared to UAA could be attributed to the change of crystal structure. The kinetic sorption test showed that fluoride sorption to AA700 arrived at equilibrium after 24 h. The equilibrium test demonstrated that the maximum sorption capacity of AA700 was 5.70 mg/g. Additional batch experiments indicated that fluoride sorption to AA700 was the highest at pH 7, decreasing at both acidic and basic solution pHs. Also, fluoride sorption to AA700 decreased in the presence of anions such as phosphate, nitrate, and carbonate. This study demonstrated that thermal treatment of AA at high temperature could increase its sorption capacity for fluoride.

Performance of PEG on immobilization of zero valent metallic particles on PVDF membrane for nitrate removal

  • Chan, Yi Shee;Chan, Mieow Kee;Ngien, Su Kong;Chew, Sho Yin;Teng, Yong Kang
    • Membrane and Water Treatment
    • /
    • v.9 no.1
    • /
    • pp.1-7
    • /
    • 2018
  • The principal objective of this study is to investigate the effect of Polyethylene Glycol (PEG) crosslinking in Polyvinylidene Fluoride (PVDF) in immobilization of Fe and bimetallic Fe/Cu and Cu/Fe zero valent particles on the membrane and its efficiency on removal of nitrate in wastewater. PVDF/PEG polymer solution of three weight compositions was prepared to manipulate the viscosity of the polymer. PEG crosslinking was indirectly controlled by the viscosity of the polymer solution. In this study, PEG was used as a modifier of PVDF membrane as well as a cross-linker for the immobilization of the zero valent particles. The result demonstrates improvement in immobilization of metallic particles with the increase in crosslinking of PEG. Nitrate removal efficiency increases too.

Phosphate Removal in Wastewater by Tobermolite (Tobermolite를 이용한 폐수내 인산염제거)

  • Lim, Bongsu;Kim, Deahyun;Yi, Teawoo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.27 no.6
    • /
    • pp.751-759
    • /
    • 2013
  • This study is carried out to get the basic design parameters for phospate removal facilites from wastewater by Tobermolite. The phosphate removal by the apatite formation on the surface was affected by several important factors, temperature, ions present in wastewater stream, contact time, recirculation rate, and etc. In case of the temperature, with the increase of temperature, the apatite formation was accelerated. When temperature increased from $15^{\circ}C$ to $35^{\circ}C$, removal efficiency of phosphate increased from 83 % to 93 %. An increase of calcium and fluoride ion content increase the apatite formation, however, bicarbonate and magnesium ion inhibited the crystallization of apatite. As expected, when the recirculation rate was increased from 1 Q to 3 Q, at EBCT (Empty Bed Contact Time) 60min enhanced removal efficiency was observed. The more the recirculation rate increased, the more the removal efficiency increased. According to the results of column experiment using an actual wastewater with low and high phosphate concentration (5 mg/L and 50 mg/L-P), the removal efficiency was 77 % at EBCT of 45 min, and 80 % at 60 min. It was suggested that optimum EBCT was 45 min.