Browse > Article
http://dx.doi.org/10.14579/MEMBRANE_JOURNAL.2018.28.4.271

Preparation of Carbon Electrodes Using Activated Carbon Fibers and Their Performance Characterization for Capacitive Deionization Process  

Park, Cheol Oh (Department of Advanced Materials and Chemical Engineering, Hannam University)
Oh, Ju Seok (Department of Advanced Materials and Chemical Engineering, Hannam University)
Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
Publication Information
Membrane Journal / v.28, no.4, 2018 , pp. 271-278 More about this Journal
Abstract
In this study, the carbon electrodes using activated carbon fibers (ACFs) were prepared for the capacitive deionization process. The Polyvinylidene fluoride (PVDF) was used as the binder and the mixed ACFs with proper solvent was cast on the commercial graphite sheets to prepare the carbon electrodes. At this moment, the different particle sizes of ACFs were applied and the mixing ratio of solvent, PVDF and ACFs, 80 : 2 : 18 and 80 : 5 : 15, were used for the electrode preparation. Then their salt removal efficiencies were characterized under the various operating conditions, adsorption potential and time, desorption potential and time, concentration of feed NaCl solution and flow rate as well. Typically, the salt removal efficiency of 53.6% were obtained at the particle size below $32{\mu}m$, mixing ratio 80 : 2 : 18, adsorption 1.2 V and 3 min, desorption -0.1V and 1 min, and 15 mL/min flow rate of NaCl 100 mg/L.
Keywords
Activated carbon fiber electrode; capacitive deionization (CDI); Polyvinylidene Fluoride (PVDF); desalination; salt removal efficiency;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 D. C. Moon, K. H. Lee, C. S. Kim, D. H. Kim, M. R. Kim, C. H. Shin, I. Y. Park, S. Y. Nam, and C. G. Lee, "Micropore analysis and adsorption characteristics of activated carbon fibers", J. Anal. Sci. Technol., 13, 89 (2000).
2 H. Li, L. Pan, Y. Zhang, L, Zou, C. Sun, Y. Zhan, and Z. Sun, "Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes", Chem. Phys. Lett., 485, 161 (2010).   DOI
3 C. O. Park and J. W. Rhim, "Performance of membrane capacitive deionization process using polyvinylidene fluoride heterogeneous ion exchange membranes Part II: Performance study of membrane capacitive deionization process", Membr. J., 27, 240 (2017).   DOI
4 G. Y. Kim and J. W. Rhim, "Performance study of membrane capacitive deionization installed with sulfonated poly(ether ether ketone) and poly(vinyl amine)/poly(vinyl alcohol) membranes", Membr. J., 26, 62 (2016).   DOI
5 K. P. Lee, T. C. Arnot, and D. Mattia, "A review of reverse osmosis membrane materials for desalination-Development to date and future potential", J. Membr. Sci., 370, 1 (2011).   DOI
6 H. M. Qiblawey and F. Banat, "Solar thermal desalination technologies", Desalination, 220, 633 (2008).   DOI
7 F. Meng, S. R. Chaeb, A. Drewsc, M. Kraumec, H. S. Shind, and F. Yang, "Recent advances in membrane bioreactors (MBRs): Membrane fouling and membrane material", Water. Res., 43, 1489 (2009).   DOI
8 P. Xu, J. E. Drewes, T. U. Kim, C Bellona, and G. Amy, "Effect of membrane fouling on transport of organic contaminants in NF/RO membrane applications", J. Membr. Sci., 279, 165 (2006).   DOI
9 S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, "Review on the science and technology of water desalination by capacitive deionization", Prog. Mater. Sci., 58, 1388 (2013).   DOI
10 Y. J. Kim and J. H. Choi, "Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane", Sep. Purif. Technol., 71, 70 (2010).   DOI
11 M. W. Ryoo, J. H. Kim, and G. Seo, "Role of titania incorporated on activated carbon cloth for capacitive deionization of NaCl solution", J. Colloid. Interface. Sci., 264, 414 (2003).   DOI
12 R. W. Pekala, J. C. Farmer, C. T. Alviso, T. D. Tran, S. T. Mayer, J. M. Miller, and B. Dunn, "Carbon aerogels for electrochemical applications", J. Non. Cryst. Solids., 225, 74 (1998).   DOI
13 S. Proda, L. Weinstein, R. Dash, A. van der Wal, M. Bryjak, Y. Gogotsi, and P. M. Biesheuvel, "Water desalination using capacitive deionization with microporous carbon electrodes", ACS. Appl. Mater. Interfaces., 4, 1194 (2012).   DOI
14 H. Li, L. Zou, L. Pan, and Z. Sun, "Novel graphene-like electrodes for capacitive deionization", Environ. Sci. Technol., 44, 8692 (2010).   DOI
15 J. S. Kim, J. H. Jung, and J. W. Rhim, "Performance study of membrane capacitive deionization process applied by perfluoropolymer and aminated poly(ether imide) ion exchange membranes", Membr. J., 25, 60 (2015).   DOI
16 B. Jia and W. Zhang, "Preparation and application of electrodes in capacitive deionization (CDI): A state-of-art review", Nanoscale. Res. Lett., 11, 64 (2016).   DOI
17 J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala, and J. F. Poco, "Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes", J. Appl. Electrochem., 26, 1007 (1996).
18 R. Ryoo, S. H. Joo, and S. Jun, "Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation", J. Phys. Chem. B, 103, 7743 (1999).   DOI
19 P. Avouris and C. Dimitrakopoulos, "Graphene: Synthesis and applications", Mater. Today. (Kidlington), 15, 86 (2012).   DOI