• Title/Summary/Keyword: Fluorescence detection system

Search Result 133, Processing Time 0.032 seconds

Trends of Deep UV-LED Technology for the Pathogen and Biotoxin Aerosol Detection System (병원균 및 생물독소 탐지시스템을 위한 원자외선 LED 기술동향)

  • Chong, Eugene;Jeong, Young-Su;Choi, Kibong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.277-284
    • /
    • 2015
  • The humans are under attack involving the hazardous environment and pathogen/biotoxin aerosol that is realistic concerned. A portable, fast, reliable, and cheap Pathogen and Biotoxin Aerosol threat Detection(PBAD) trigger is an important technology for detect-to-protect and detect-to-treat system because the man-made biological terror is a fast and lethal infection. The ultraviolet C(UVC) wavelengths light source is key issue for PBAD that is sensitive because of strong fluorescence cross section from fluorescent amino acids in proteins such as tryptophan and tyrosine. The UVC-light emitting diode(LED) is emerging light source technology as alternative to laser or lamps as they offer several advantages. This paper discussed about the design consideration of UVC-LED for the PBAD system. The UVC-LED and PBAD technology, currently available or in development, are also discussed.

Study of a Brain Tumor and Blood Vessel Detection System Using Multiple Fluorescence Imaging by a Surgical Microscope (수술현미경에서의 다중형광영상을 이용한 뇌종양과 혈관영상 검출 시스템 연구)

  • Lee, Hyun Min;Kim, Hong Rae;Yoon, Woong Bae;Kim, Young Jae;Kim, Kwang Gi;Kim, Seok Ki;Yoo, Heon;Lee, Seung Hoon;Shin, Min Sun;Kwon, Ki Chul
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.1
    • /
    • pp.23-29
    • /
    • 2015
  • In this paper, we propose a microscope system for detecting both a tumor and blood vessels in brain tumor surgery as fluorescence images by using multiple light sources and a beam-splitter module. The proposed method displays fluorescent images of the tumor and blood vessels on the same display device and also provides accurate information about them to the operator. To acquire a fluorescence image, we utilized 5-ALA (5-aminolevulinic acid) for the tumor and ICG (Indocyanine green) for blood vessels, and we used a beam-splitter module combined with a microscope for simultaneous detection of both. The beam-splitter module showed the best performance at 600 nm for 5-ALA and above 800 nm for ICG. The beam-splitter is flexible to enable diverse objective setups and designed to mount a filter easily, so beam-splitter and filter can be changed as needed, and other fluorescent dyes besides 5-ALA and ICG are available. The fluorescent images of the tumor and the blood vessels can be displayed on the same monitor through the beam-splitter module with a CCD camera. For ICG, a CCD that can detect the near-infrared region is needed. This system provides the acquired fluorescent image to an operator in real time, matching it to the original image through a similarity transform.

Analysis of Blood Cell Images Using Smartphone-based Mobile SmartScope (스마트폰 기반 Mobile SmartScope를 이용한 혈구 영상 분석)

  • Park, Choonho;Cho, Myoung-Ock;Lee, Donghee;Kim, Jung Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.2
    • /
    • pp.25-31
    • /
    • 2012
  • High-performance smartphones, equipped with a digital camera and an application software, can render conventional bench-top laboratory instruments mobile at affordable costs. As the smartphone-based devices are portable and wireless, they have wide applications especially in providing point-of-care (POC) tests in resource-constrained areas. We developed a hand-held diagnostic system, Mobile SmartScope, which consists of a small optical unit integrated with a smartphone. The performance of the SmartScope was favorably compared with that of conventional light microscopy in detecting and quantifying red blood cells. We also evaluated the fluorescence detection limit of the SmartScope incorporated with a blue light-emitting diode and appropriate optical filters by using fluorescently labeled microbeads for intensity calibration.

Quantitation of Antigen-Antibody Reaction Condition for Development of Fluorescence Image-based CD4 Rapid Test (형광 영상 기반 CD4 신속 검사법 개발을 위한 항원-항체 반응 조건 정량화)

  • Kim, Subin;Kim, Jung Kyung
    • Journal of the Korean Society of Visualization
    • /
    • v.13 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • CD4+ T-cell count determines the effectiveness for antiretroviral therapy (ART) in patients with human immunodeficiency virus (HIV). Although ART slows the progression of HIV to AIDS, rapid counting of CD4+ T lymphocytes with a drop of patient's blood sample is urgently needed to ensure timely ART treatment in rural areas. Recently point-of-care CD4 testing devices have been developed by using non-flow based imaging cytometer incorporated with a sample cartridge where CD4+ T cells are reacted with fluorescently tagged specific antibodies. Here we conducted an experimental study using a conventional fluorescence microscope-based imaging system to quantitate the interaction of CD4 antibodies with CD4+ T cells at different reaction conditions. We demonstrated that a fast and affordable point-of-care CD4 test is feasible with a far less amount of antibodies and a shorter incubation time compared with a conventional sample preparation protocol for flow cytometry. We also proposed a general method to evaluate and compare the detection limit across different CD4 counting platforms by using fluorescently labelled microbeads for intensity calibration.

The Application of a Laser to the Chemical Characterization of Radionuclides

  • Park, Y.J.;Park, K.K.;M/Y. Suh;S.K. Yoon;Park, Y.S.;Kim, D.Y.;Kim, W.H.
    • Nuclear Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.446-456
    • /
    • 2000
  • Laser induced photoacoustic, fluorescence, and photon correlation spectroscopies were applied to the chemical characterization of radionuclides in connection with the radiowaste treatment and disposal. Their measuring principles and systems were briefly described together with their advantages over conventional spectroscopies. Also, other applications of lasers are introduced. Laser induced photoacoustic spectra were measured for a P $r^{3+}$ solution with a very low molar absorptivity. The detection sensitivity was 4.3 $\times$10$^{-5}$ c $m^{1}$ and was 100 times better than that of a UV/VIS spectrophotometer. The Eu(III) excitation spectra($^{7}$ $F_{0}$ longrightarrow $^{5}$ $D_{0}$ transition) were measured for Eu(III)-phthalate complexes using laser fluorescence spectroscopy, showing that only two species, 1:1 and 1:2 complexes, are present in the Eu(III)-phthalic acid system. The size and size distribution for colloidal humic acids and Eu(III)-humate colloids was determined using photon correlation spectroscopy. The presence of Eu(III) enhanced the aggregation of humic acids.s.

  • PDF

Development of Dental Calculus Diagnosis System using Fluorescence Detection (형광 검출을 이용한 치석 진단 시스템 개발)

  • Jang, Seon-Hui;Lee, Young-Rim;Lee, Woo-Cheol
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.715-722
    • /
    • 2022
  • If you don't regularly go to the dentist to check your teeth, it is difficult to notice cavities or various diseases of your teeth until you have pain or discomfort. Dental plaque is produced by the combination of food or foreign substances and bacteria in the mouth. Starch breaks down from the bacteria that form tartar. The acid that occurs at this time melts the enamel of the teeth and becomes a cavity. So tartar management is important. Poppyrin, the metabolism of bacteria in the mouth, reacts at 405 nm wavelengths and becomes red fluorescent, which can be seen by imaging through certain wavelength filters. By the above method, Frag and tartar are fluorescently detected and photographed with a yellow series of filters that pass wavelengths of 500 nm or more. It uses MATLAB to detect and display red fluorescence through image processing. Using the difference in voltage between normal teeth and tartar through an optical measuring circuit, it was connected to an Arduino and displayed on the LCD. This allows the user to know the presence and location of dental plaque more accurately.

Comparison of Non-desructive Method to Detect Nitrogen Deficient Cucumber (질소결핍 오이의 비파괴 진단법 비교)

  • 성제훈;서상룡;류육성;정갑채
    • Journal of Biosystems Engineering
    • /
    • v.24 no.6
    • /
    • pp.539-546
    • /
    • 1999
  • Some stress for a plant could be detected to a certain degree by plant physiological measuring technique of the state of the art. The capability of early detection of my measuring system depends on kind of plant and kind and level of stress. The objectives of this study were to evaluate the capability of several fast and intact type plant stress detection systems to detect nitrogen deficiency of cucumber in the field. A series of experiment was carried out with four kinds of intact type measuring devices - a chlorophyll content meter, a chlorophyll fluorescence measurement system, an infrared thermometer and an optical spectrometer. The experiments resulted that the chlorophyll content meter could detect the stress of N deficiency at a confidence level higher than 95% on 3rd day for the earliest case and the detection of high precision was possible from 7th day after the stress was applied. The chlorophyll fluorescence measurement system detected the stress at a confidence level higher than 95% on 3rd day for the earliest case but the detection was not as much precise as the chlorophyll content meter. Leaf temperature measurement noted very poor results to detect the stress. Using the spectrometer, sensitive wavelength regions to detect the stress were searched and found out as 562∼564 nm, 700∼724 nm and 1,886∼1,894 nm. With the spectrometer using any of wavelength within the sensitive wavelength region, detection of the stress at a confidence level higher than 95% was possible from 3rd or 4th day after the stress was applied.

  • PDF

Development of Indocyanine Green and 5-Aminolevulinic Acid Detection System for Surgical Microscope (수술현미경용 다중형광 관측 시스템 연구)

  • Kim, Hong Rae;Lee, Hyun Min;Yoon, Woong Bae;Kim, Young Jae;Kim, Seok Ki;Yoo, Heon;Joo, Jae Young;Kim, Kwang Gi;Lee, Seung-Hoon
    • Journal of Biomedical Engineering Research
    • /
    • v.36 no.1
    • /
    • pp.16-21
    • /
    • 2015
  • Indocyanine green(ICG) and 5-aminolevulinic acid(5-ALA) have been widely used to mark blood vessels or tumors. However, fluorescent dye detection systems were designed to use one type of dyes only. In this study, we proposed a detection system capable of detecting Indocyanine green and 5-aminolevulinic acid. Multiple filters and light sources are integrated into a single system. In this study, we performed analysis of fluorescent dyes and configured a detection system. During the analysis, it was found that Indocyanine green and 5-aminolevulinic acid have the maximum intensity at $40{\mu}M$. We designed light source for fluorescent dyes and conducted compatibility test using a commercial surgical microscope. The fluorescent dye detection system was configured based on the experimental results. The developed system successfully detects Indocyanine green and 5-aminolevulinic acid. Therefore, more efficient surgical operations can be achieved using both fluorescent dyes at the same time. We expect that the developed system can increase the survival rate of patients.

Study of Miniature Fluorescence Detection System for Protein Chip (단백질 칩용 초소형 미세형광측정 시스템에 관한 연구)

  • Seong, Cheon-Ya;Kim, Ho-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1944-1946
    • /
    • 2003
  • 질병의 발현과 직접적인 관련이 있는 단백질의 검출, 정량화하는 분석 장비를 소형화 할 수 있는 방법을 소개하고 그 가능성을 실험적으로 확인하였다. 단백질 검출을 위한 형광측정방법에서 가장 큰 문제인 여기광과의 혼재로 인한 신호 대 잡음 비를 해결하기 위해 마이크로 프리즘을 이용한 여기 방식을 고안하고 설계, 시뮬레이션 하였으며, 선행 실험을 통해 프리즘의 이용한 형광검출방법이 신호 대 잡음 비의 향상과 분석 시스템의 소형화에 효과적임을 확인하였다.

  • PDF

Determination of Eu(III) by Fluorescence Spectrometry (형광분광법에 의한 Eu(Ⅲ)의 정량)

  • Lee, Sang Hak;Han, Jong Hwan;Choi, Sang Seob
    • Journal of the Korean Chemical Society
    • /
    • v.42 no.3
    • /
    • pp.285-291
    • /
    • 1998
  • Methods to determine EU(Ⅲ) ion in aqueous solution by fluorescence spectrometry based upon the ligand sensitized fluorescence of Eu(Ⅲ)-terephthalic acid (TPA) complex ion have been studied. The effects of excitation wavelength, pH, concentration of TPA and emission wavelength on the fluorescence intensity were investigated. The fluorescence intensity of the Eu(Ⅲ) complex ion was further increased with addition of trioctylphosphine oxide (TOPO). In this case Triton X-100 was used to dissolve TOPO in aqueous solution. The calibration curve for Eu(Ⅲ) was linear over the range from $1.0{\times}10^{-6}M\;to\;4.0{\times}10^{-4}M$ and the detection limit was $1.0{\times}10^{-6}M$ under the experimental conditions of 256 nm, 5.6, $3.5{\times}10^{-4}$M$ and 615 nm for excitation wavelength, pH, concentration of TPA and emission wavelength, respectively. When TOPO was added to the Eu(Ⅲ)-TPA system, the concentration range of linear response and the detection limit were $1.0 {\times}10^{-9}M\;to\;1.0{\times}10^{-4}M,\;1.0{\times}10^{-7}M,$ respectively under the experimental conditions of 284 nm, 4.4 and $1.0{\times} 10^{-4}M$ for excitation wavelength, pH and concentration of TOPO, respectively. Effects of interferences from various cations for the determination of Eu(Ⅲ) ion were also investigated.

  • PDF