DOI QR코드

DOI QR Code

Development of Indocyanine Green and 5-Aminolevulinic Acid Detection System for Surgical Microscope

수술현미경용 다중형광 관측 시스템 연구

  • Kim, Hong Rae (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center) ;
  • Lee, Hyun Min (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center) ;
  • Yoon, Woong Bae (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center) ;
  • Kim, Young Jae (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center) ;
  • Kim, Seok Ki (Molecular Imaging & Therapy Branch, National Cancer Center) ;
  • Yoo, Heon (Pediatric Oncology Branch & Hospital, National Cancer Center) ;
  • Joo, Jae Young (Lighting Technology Team, Korea Photonics Technology Institute) ;
  • Kim, Kwang Gi (Biomedical Engineering Branch, Division of Convergence Technology, National Cancer Center) ;
  • Lee, Seung-Hoon (Pediatric Oncology Branch & Hospital, National Cancer Center)
  • 김홍래 (국립암센터 융합기술연구부 의공학연구과) ;
  • 이현민 (국립암센터 융합기술연구부 의공학연구과) ;
  • 윤웅배 (국립암센터 융합기술연구부 의공학연구과) ;
  • 김영재 (국립암센터 융합기술연구부 의공학연구과) ;
  • 김석기 (국립암센터 융합기술연구부 분자영상치료연구과) ;
  • 유헌 (국립암센터 이행성 임상 제 2연구부 특수암연구과) ;
  • 주재영 (한국광기술원 신조명연구본부 스마트조명연구센터) ;
  • 김광기 (국립암센터 융합기술연구부 의공학연구과) ;
  • 이승훈 (국립암센터 이행성 임상 제 2연구부 특수암연구과)
  • Received : 2014.10.05
  • Accepted : 2014.12.24
  • Published : 2015.02.28

Abstract

Indocyanine green(ICG) and 5-aminolevulinic acid(5-ALA) have been widely used to mark blood vessels or tumors. However, fluorescent dye detection systems were designed to use one type of dyes only. In this study, we proposed a detection system capable of detecting Indocyanine green and 5-aminolevulinic acid. Multiple filters and light sources are integrated into a single system. In this study, we performed analysis of fluorescent dyes and configured a detection system. During the analysis, it was found that Indocyanine green and 5-aminolevulinic acid have the maximum intensity at $40{\mu}M$. We designed light source for fluorescent dyes and conducted compatibility test using a commercial surgical microscope. The fluorescent dye detection system was configured based on the experimental results. The developed system successfully detects Indocyanine green and 5-aminolevulinic acid. Therefore, more efficient surgical operations can be achieved using both fluorescent dyes at the same time. We expect that the developed system can increase the survival rate of patients.

Keywords

References

  1. http://ncc.re.kr/hospital/centers/center07/clinic04/content_3396.jsp
  2. J. C. Yoo, S. P. Lee, J. G. Kim, G. H. Choi, H. T. Yeo, "An Image Study of Malignant Glioma Model with Diffraction Enhanced Imaging Computed Tomography", Journal of Korean Brain Tumor Society, vol. 10, pp. 103-109, 2011.
  3. A. Rück, C. Hauser, S. Lorenz, S. Mosch, S. Rotte, M. Kessler, S. Kalinina, "Cell metabolism, tumour diagnosis and multispectral FLIM." in SPIE BiOS. International Society for Optics and Photonics, 2013, San Francisco, California, USA, pp. 85880U-85880U-85888.
  4. L. Teng, M. Nakada, Y. Hayashi, T. Yoneyama, S.-G. Zhao, J.-I. Hamada, Current Applications of 5-ALA in Glioma Diagnostics and Therapy, INTECH. 2013, pp. 249-261.
  5. B. W. Pogue, S. L. Gibbs-Strauss, P. A. Valdés, K. S. Samkoe, D. W. Roberts, K. D. Paulsen, "Review of neurosurgical fluorescence imaging methodologies." Selected Topics in Quantum Electronics, vol. 16, PP. 493-505, 2010. https://doi.org/10.1109/JSTQE.2009.2034541
  6. M. Schwake, D. Günes, M. Kochling, A. Brentrup, J. Schroeteler, M. Hotfilder, M. C. Fruehwald, W. Stummer, C. Ewelt, "Kinetics of porphyrin fluorescence accumulation in pediatric brain tumor cells incubated in 5-aminolevulinic acid." Acta neurochirurgica, vol. 156, pp. 1077-1084, 2014. https://doi.org/10.1007/s00701-014-2096-7
  7. T. Beez, S. Sarikaya-Seiwert, H.-J. Steiger, D. Hanggi, "Fluorescence-guided surgery with 5-aminolevulinic acid for resection of brain tumors in children-a technical report." Acta neurochirurgica, vol. 156, pp. 597-604, 2014. https://doi.org/10.1007/s00701-014-1997-9
  8. M. Hefti, H. Maximilian Mehdorn, I. Albert, L. Dorner, "Fluorescence- guided surgery for malignant glioma: a review on aminolevulinic acid induced protoporphyrin IX photodynamic diagnostic in brain tumors." Current Medical Imaging Reviews, vol. 6, pp. 254-258, 2010. https://doi.org/10.2174/157340510793205503
  9. G. Klein, R. Baumgartner, R. Flower, "An image processing approach to characterizing choroidal blood flow." Investigative ophthalmology & visual science, vol. 31, pp. 629-637, 1990.
  10. G. Themelis, J. S. Yoo, K.-S. Soh, R. Schulz, V. Ntziachristos, "Real-time intraoperative fluorescence imaging system using light-absorption correction." Journal of biomedical optics, vol. 14, pp. 064012-064012-064019, 2009. https://doi.org/10.1117/1.3259362
  11. C. B. Jeong, K. G. Kim, T. S. Kim, S. K. Kim, "Image Fusion of Lymphoscintigraphy and Real images for Sentinel Lymph Node Biopsy in Breast Cancer Patients." Journal of Biomedical Engineering Research, vol. 31, no. 2, pp. 114-122, 2010.
  12. J. T. Alander, I. Kaartinen, A. Laakso, T. Patila, T. Spillmann, V. V. Tuchin, M. Venermo, P. Valisuo, "A review of indocyanine green fluorescent imaging in surgery." Journal of Biomedical Imaging, vol. 2012, pp. 7, 2012.
  13. W. Stummer, U. Pichlmeier, T. Meinel, O. D. Wiestler, F. Zanella, H.-J. Reulen, "Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial." The lancet oncology, vol 7, pp. 392-401 (2006). https://doi.org/10.1016/S1470-2045(06)70665-9
  14. B. Ganeshan, K. A. Miles, R. C. Young, C. R. Chatwin, "In search of biologic correlates for liver texture on portal-phase CT." Academic radiology, vol. 14, pp. 1058-1068, 2007. https://doi.org/10.1016/j.acra.2007.05.023
  15. F. Ricci, F. Missiroli, L. Cerulli, "Indocyanine green dyeenhanced micropulsed diode laser: a novel approach to subthreshold RPE treatment in a case of central serous chorioretinopathy." European journal of ophthalmology, vol. 14, pp. 74-82, 2003.
  16. M. V. Marshall, J. C. Rasmussen, I.-C. Tan, M. B. Aldrich, K. E. Adams, X. Wang, C. E. Fife, E. A. Maus, L. A. Smith, E. M. Sevick-Muraca, "Near-infrared fluorescence imaging in humans with indocyanine green: a review and update." Open surgical oncology journal (Online), vol. 2, pp. 12, 2010. https://doi.org/10.2174/1876504101002020012
  17. G. Themelis, J. S. Yoo, V. Ntziachristos, "Multispectral imaging using multiple-bandpass filters." Optics letters, vol. 33, pp. 1023-1025, 2008. https://doi.org/10.1364/OL.33.001023
  18. Y. Kondo, Y. Murayama, H. Konishi, R. Morimura, S. Komatsu, A. Shiozaki, Y. Kuriu, H. Ikoma, T. Kubota, M. Nakanishi, "Fluorescent detection of peritoneal metastasis in human colorectal cancer using 5-aminolevulinic acid." International journal of oncology, vol. 45, pp. 41-46, 2014. https://doi.org/10.3892/ijo.2014.2417