• Title/Summary/Keyword: Fluorescence Imaging

Search Result 231, Processing Time 0.025 seconds

Multispectral intravital microscopy for simultaneous bright-field and fluorescence imaging of the microvasculature

  • Barry G. H. Janssen;Mohamadreza Najiminaini;Yan Min Zhang;Parsa Omidi;Jeffrey J. L. Carson
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.12.1-12.12
    • /
    • 2021
  • Intravital video microscopy permits the observation of microcirculatory blood flow. This often requires fluorescent probes to visualize structures and dynamic processes that cannot be observed with conventional bright-field microscopy. Conventional light microscopes do not allow for simultaneous bright-field and fluorescent imaging. Moreover, in conventional microscopes, only one type of fluorescent label can be observed. This study introduces multispectral intravital video microscopy, which combines bright-field and fluorescence microscopy in a standard light microscope. The technique enables simultaneous real-time observation of fluorescently-labeled structures in relation to their direct physical surroundings. The advancement provides context for the orientation, movement, and function of labeled structures in the microcirculation.

Apple Quality Measurement Using Hyperspectral Reflectance and Fluorescence Scattering (하이퍼 스펙트랄 반사광 및 형광 산란을 이용한 사과 품질 측정)

  • Noh, Hyun-Kwon;Lu, Renfu
    • Journal of Biosystems Engineering
    • /
    • v.34 no.1
    • /
    • pp.37-43
    • /
    • 2009
  • Hyperspectral reflectance and fluorescence scattering have been researched recently for measuring fruit post-harvest quality and condition. And they are promising for nondestructive detection of fruit quality. The objective of this research was to develop a model, which measure the quality of apple by using hyperspectral reflectance and fluorescence. A violet laser (408 nm) and a quartz tungsten halogen light were used as light sources for generating laser induced fluorescence and reflectance scattering in apples, respectively. The laser induced fluorescence and reflectance of 'Golden Delicious' apples were measured by using a hyperspectral imaging system. Fruit firmness, soluble solids and acid content were measured using standard destructive methods. Principal component analyses were performed to extract critical information from both hyperspectral reflectance and fluorescence data and this information was then related to fruit quality indexes. The fluorescence models had poorer predictions of the three quality indexes than the reflectance models. However, the prediction models of integrating fluorescence and reflectance performed consistently better than the individual models of either reflectance or fluorescence. The correlation coefficient for fruit firmness, soluble solid content, and tillable acidity from the integrated model was 0.86, 0.75, and 0.66 respectively. Also the standard errors were 6.97 N, 1.05%, and 0.07% respectively.

Polymeric nanoparticles as dual-imaging probes for cancer management

  • Menon, Jyothi U.;Jadeja, Parth;Tambe, Pranjali;Thakore, Dheeraj;Zhang, Shanrong;Takahashi, Masaya;Xie, Zhiwei;Yang, Jian;Nguyen, Kytai T.
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.3
    • /
    • pp.129-140
    • /
    • 2016
  • This article reports the development of biodegradable photoluminescent polymer (BPLP)-based nanoparticles (NPs) incorporating either magnetic nanoparticles (BPLP-MNPs) or gadopentate dimeglumine (BPLP-Gd NPs), for cancer diagnosis and treatment. The aim of the study is to compare these nanoparticles in terms of their surface properties, fluorescence intensities, MR imaging capabilities, and in vitro characteristics to choose the most promising dual-imaging nanoprobe. Results indicate that BPLP-MNPs and BPLP-Gd NPs had a size of $195{\pm}43nm$ and $161{\pm}55nm$, respectively and showed good stability in DI water and 10% serum for 5 days. BPLP-Gd NPs showed similar fluorescence as the original BPLP materials under UV light, whereas BPLP-MNPs showed comparatively less fluorescence. VSM and MRI confirmed that the NPs retained their magnetic properties following encapsulation within BPLP. Further, in vitro studies using HPV-7 immortalized prostate epithelial cells and human dermal fibroblasts (HDFs) showed > 70% cell viability up to $100{\mu}g/ml$ NP concentration. Dose-dependent uptake of both types of NPs by PC3 and LNCaP prostate cancer cells was also observed. Thus, our results indicate that BPLP-Gd NPs would be more appropriate for use as a dual-imaging probe as the contrast agent does not mask the fluorescence of the polymer. Future studies would involve in vivo imaging following administration of BPLP-Gd NPs for biomedical applications including cancer detection.

The Study on the Excitation Lasers for NO Planar Laser-Induced Fluorescence Imaging (NO PLIF용 excitation 레이저에 관한 연구)

  • Kang, Kyung-Tae
    • 한국연소학회:학술대회논문집
    • /
    • 1997.06a
    • /
    • pp.13-21
    • /
    • 1997
  • Excitations of eight pumping transitions for nitric oxide fluorescence imaging are analyzed under equivalent experimental conditions to determine the detection. Frequency mixed dye laser pumping, 1st anti-Stokes $H_2$ Raman of KrF excimer laser pumping and ArF excimer laser pumping show good sensitivities.

  • PDF

Application and Prospects of Molecular Imaging (분자영상의 적용분야 및 전망)

  • Choi, Guyrack;Lee, Sangbock
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.3
    • /
    • pp.123-136
    • /
    • 2014
  • In this paper, we study to classify molecular imaging and applications to predict future. Molecular imaging in vivo at the cellular level and the molecular level changes taking place to be imaged, that is molecular cell biology and imaging technology combined with the development of the new field. Molecular imaging is used fluorescence, bioluminescence, SPECT, PET, MRI, Ultrasound and other imaging technologies. That is applied to monitoring of gene therapy, cell tracking and monitoring of cell therapy, antibody imaging, drug development, molecular interaction picture, the near-infrared fluorescence imaging of cancer using fluorescence, bacteria using tumor-targeting imaging, therapeutic early assessment, prediction and therapy. The future of molecular imaging would be developed through fused interdisciplinary research and mutual cooperation, which molecular cell biology, genetics, chemistry, physics, computer science, biomedical engineering, nuclear medicine, radiology, clinical medicine, etc. The advent of molecular imaging will be possible to early diagnosis and personalized treatment of disease in the future.

Real-time Fluorescence Lifetime Imaging Microscopy Implementation by Analog Mean-Delay Method through Parallel Data Processing

  • Kim, Jayul;Ryu, Jiheun;Gweon, Daegab
    • Applied Microscopy
    • /
    • v.46 no.1
    • /
    • pp.6-13
    • /
    • 2016
  • Fluorescence lifetime imaging microscopy (FLIM) has been considered an effective technique to investigate chemical properties of the specimens, especially of biological samples. Despite of this advantageous trait, researchers in this field have had difficulties applying FLIM to their systems because acquiring an image using FLIM consumes too much time. Although analog mean-delay (AMD) method was introduced to enhance the imaging speed of commonly used FLIM based on time-correlated single photon counting (TCSPC), a real-time image reconstruction using AMD method has not been implemented due to its data processing obstacles. In this paper, we introduce a real-time image restoration of AMD-FLIM through fast parallel data processing by using Threading Building Blocks (TBB; Intel) and octa-core processor (i7-5960x; Intel). Frame rate of 3.8 frames per second was achieved in $1,024{\times}1,024$ resolution with over 4 million lifetime determinations per second and measurement error within 10%. This image acquisition speed is 184 times faster than that of single-channel TCSPC and 9.2 times faster than that of 8-channel TCSPC (state-of-art photon counting rate of 80 million counts per second) with the same lifetime accuracy of 10% and the same pixel resolution.

Automated 3D scoring of fluorescence in situ hybridization (FISH) using a confocal whole slide imaging scanner

  • Ziv Frankenstein;Naohiro Uraoka;Umut Aypar;Ruth Aryeequaye;Mamta Rao;Meera Hameed;Yanming Zhang;Yukako Yagi
    • Applied Microscopy
    • /
    • v.51
    • /
    • pp.4.1-4.12
    • /
    • 2021
  • Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for 3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging, significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be integrated with SHIMARIS PAFQ.

Development of An Integration Management System of Analyzing Fluorescence Images on Smart Phone (모바일용 형광이미지 분석 통합관리 시스템 개발)

  • Cho, Mi-Gyung;Shim, Jae-Sool
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.05a
    • /
    • pp.916-919
    • /
    • 2012
  • Bioimaging that can be imaging phenomena within cells of a molecular size have been advanced in technology. We can observe clearly DNA and proteins using a confocal microscope. Currently biological fluorescent imaging area is used essentially for diagnosis and treatment in health and clinical care field. In this paper, we developed an integration management system of analyzing fluorescence images on smart phone. It can support a user to analyse fluorescence images anytime anywhere. And our system is based on client-server configuration and has functions that can figure intensity of fluorescence images and manage many imaging data. Proposed system can be a mean of ubiquitous health because it helps a doctor diagnose by analyzing fluorescence images of emergency patients without time and space restrictions.

  • PDF

Detecting Drought Stress in Soybean Plants Using Hyperspectral Fluorescence Imaging

  • Mo, Changyeun;Kim, Moon S.;Kim, Giyoung;Cheong, Eun Ju;Yang, Jinyoung;Lim, Jongguk
    • Journal of Biosystems Engineering
    • /
    • v.40 no.4
    • /
    • pp.335-344
    • /
    • 2015
  • Purpose: Soybean growth is adversely affected by environmental stresses such as drought, extreme temperatures, and nutrient deficiency. The objective of this study was to develop a method for rapid measurement of drought stress in soybean plants using a hyperspectral fluorescence imaging technique. Methods: Hyperspectral fluorescence images were obtained using UV-A light with 365 nm excitation. Two soybean cultivars under drought stress were analyzed. A partial least square regression (PLSR) model was used to predict drought stress in soybeans. Results: Partial least square (PLS) images were obtained for the two soybean cultivars using the results of the developed model during the period of drought stress treatment. Analysis of the PLS images showed that the accuracy of drought stress discrimination in the two cultivars was 0.973 for an 8-day treatment group and 0.969 for a 6-day treatment group. Conclusions: These results validate the use of hyperspectral fluorescence images for assessing drought stress in soybeans.