DOI QR코드

DOI QR Code

Automated 3D scoring of fluorescence in situ hybridization (FISH) using a confocal whole slide imaging scanner

  • Ziv Frankenstein (Department of Pathology, Memorial Sloan Kettering Cancer Center) ;
  • Naohiro Uraoka (Department of Pathology, Memorial Sloan Kettering Cancer Center) ;
  • Umut Aypar (Department of Pathology, Memorial Sloan Kettering Cancer Center) ;
  • Ruth Aryeequaye (Department of Pathology, Memorial Sloan Kettering Cancer Center) ;
  • Mamta Rao (Department of Pathology, Memorial Sloan Kettering Cancer Center) ;
  • Meera Hameed (Department of Pathology, Memorial Sloan Kettering Cancer Center) ;
  • Yanming Zhang (Department of Pathology, Memorial Sloan Kettering Cancer Center) ;
  • Yukako Yagi (Department of Pathology, Memorial Sloan Kettering Cancer Center)
  • Received : 2021.02.16
  • Accepted : 2021.03.29
  • Published : 2021.12.31

Abstract

Fluorescence in situ hybridization (FISH) is a technique to visualize specific DNA/RNA sequences within the cell nuclei and provide the presence, location and structural integrity of genes on chromosomes. A confocal Whole Slide Imaging (WSI) scanner technology has superior depth resolution compared to wide-field fluorescence imaging. Confocal WSI has the ability to perform serial optical sections with specimen imaging, which is critical for 3D tissue reconstruction for volumetric spatial analysis. The standard clinical manual scoring for FISH is labor-intensive, time-consuming and subjective. Application of multi-gene FISH analysis alongside 3D imaging, significantly increase the level of complexity required for an accurate 3D analysis. Therefore, the purpose of this study is to establish automated 3D FISH scoring for z-stack images from confocal WSI scanner. The algorithm and the application we developed, SHIMARIS PAFQ, successfully employs 3D calculations for clear individual cell nuclei segmentation, gene signals detection and distribution of break-apart probes signal patterns, including standard break-apart, and variant patterns due to truncation, and deletion, etc. The analysis was accurate and precise when compared with ground truth clinical manual counting and scoring reported in ten lymphoma and solid tumors cases. The algorithm and the application we developed, SHIMARIS PAFQ, is objective and more efficient than the conventional procedure. It enables the automated counting of more nuclei, precisely detecting additional abnormal signal variations in nuclei patterns and analyzes gigabyte multi-layer stacking imaging data of tissue samples from patients. Currently, we are developing a deep learning algorithm for automated tumor area detection to be integrated with SHIMARIS PAFQ.

Keywords

Acknowledgement

The authors would like to thank the National Institutes of Health/National Cancer Institute, the Warren Alpert Foundation, 3DHISTECH for the technical support and all the pathologists who provided their time and expertise in evaluating the images and providing useful comments.

References

  1. D. Alpar, J. Hermesz, L. Poto, R. Laszlo, L. Kereskai, P. Jakso, G. Pajor, L. Pajor, B. Kajtar, Automated FISH analysis using dual-fusion and break-apart probes on paraffin-embedded tissue sections. Cytometry A 73, 651-657 (2008)
  2. E. Brachtel, Y. Yagi, Digital imaging in pathology--current applications and challenges. J. Biophotonics 5, 327-335 (2012)
  3. T.C. Cornish, R.E. Swapp, K.J. Kaplan, Whole-slide imaging: routine pathologic diagnosis. Adv. Anat. Pathol. 19, 152-159 (2012)
  4. L. Di Stefano, S. Mattoccia, Fast template matching using bounded partial correlation. Mach. Vis. Appl. 13, 213-221 (2003)
  5. A. Diaspro, Confocal and two-photon microscopy: foundations, applications and advances (Wiley-Liss, 2001)
  6. S.R.K. Gihan Kuruppu, U.A.J. Pinidiyaarachchi, High speed motion tracking for weightlifting based on correlation coefficient template matching. Int. J. Soft. Comput. Eng. 2 (2013)
  7. A. Gozzetti, M.M. Le Beau, Fluorescence in situ hybridization: uses and limitations. Semin. Hematol. 37, 320-333 (2000)
  8. M. Gue, C. Messaoudi, J.S. Sun, T. Boudier, Smart 3D-FISH: automation of distance analysis in nuclei of interphase cells by image processing. Cytometry A 67, 18-26 (2005)
  9. G. Hildenbrand, A. Rapp, U. Spori, C. Wagner, C. Cremer, M. Hausmann, Nanosizing of specific gene domains in intact human cell nuclei by spatially modulated illumination light microscopy. Biophys. J. 88, 4312-4318 (2005)
  10. L. Hu, K. Ru, L. Zhang, Y. Huang, X. Zhu, H. Liu, A. Zetterberg, T. Cheng, W. Miao, Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomark. Res. 2, 3 (2014)
  11. B. Kajtar, G. Mehes, T. Lorch, L. Deak, M. Kneifne, D. Alpar, L. Pajor, Automated fluorescent in situ hybridization (FISH) analysis of t (9;22)(q34;q11) in interphase nuclei. Cytometry A 69, 506-514 (2006)
  12. A. Kikuchi, T. Sawamura, O. Daimaru, M. Horie, K. Sasaki, N. Okita, Improved protocol for extraction of genomic DNA from formalin-fixed paraffin-embedded tissue samples without the use of xylene. Clin. Chem. Lab. Med. 54, e375-e377 (2016)
  13. C. Laurent, M. Guerin, F.X. Frenois, V. Thuries, L. Jalabert, P. Brousset, S. Valmary-Degano, Whole-slide imaging is a robust alternative to traditional fluorescent microscopy for fluorescence in situ hybridization imaging using break-apart DNA probes. Hum. Pathol. 44, 1544-1555 (2013)
  14. C. Li, J. Bai, X. Hao, S. Zhang, Y. Hu, X. Zhang, W. Yuan, L. Hu, T. Cheng, A. Zetterberg, et al., Multi-gene fluorescence in situ hybridization to detect cell cycle gene copy number aberrations in young breast cancer patients. Cell Cycle 13, 1299-1305 (2014)
  15. J. Li, W. Su, S. Zhang, Y. Hu, J. Liu, X. Zhang, J. Bai, W. Yuan, L. Hu, T. Cheng, et al., Epidermal growth factor receptor and AKT1 gene copy numbers by multi-gene fluorescence in situ hybridization impact on prognosis in breast cancer. Cancer Sci. 106, 642-649 (2015)
  16. S. Ourselin, X. Pennec, R. Stefanescu, G. Malandain, N. Ayache, Robust registration of multi-modal medical images: toward real-time clinical applications, medical image computing and computer-assisted intervention (2001)
  17. J.J. Roix, P.G. McQueen, P.J. Munson, L.A. Parada, T. Misteli, Spatial proximity of translocation-prone gene loci in human lymphomas. Nat. Genet. 34, 287-291 (2003)
  18. P. Sesques, N.A. Johnson, Approach to the diagnosis and treatment of high-grade B-cell lymphomas with MYC and BCL2 and/or BCL6 rearrangements. Blood 129, 280-288 (2017)
  19. M.R. Tanas, B.P. Rubin, R.R. Tubbs, S.D. Billings, E. Downs-Kelly, J.R. Goldblum, Utilization of fluorescence in situ hybridization in the diagnosis of 230 mesenchymal neoplasms: An institutional experience. Arch. Pathol. Lab. Med. 134, 1797-1803 (2010)
  20. A.D. Watters, J.M. Bartlett, Fluorescence in situ hybridization in paraffin tissue sections: Pretreatment protocol. Mol. Biotechnol. 21, 217-220 (2002)
  21. S.D. Wei, S.H. Lai, Fast template matching based on normalized cross correlation with adaptive multilevel winner update. IEEE Trans. Image Process. 17, 2227-2235 (2008)
  22. S.J. Wright, V.E. Centonze, S.A. Stricker, P.J. DeVries, S.W. Paddock, G. Schatten, Introduction to confocal microscopy and three-dimensional reconstruction. Methods Cell Biol. 38, 1-45 (1993)
  23. J.K.L. Xiujun Fu, M. Onozato, A. Iafrate, Y. Yagi, Evaluation of a confocal WSI scanner for FISH slide imaging and image analysis. Diagn. Pathol. 3, 2364-4893 (2017)