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Purpose: Soybean growth is adversely affected by environmental stresses such as drought, extreme temperatures, and 

nutrient deficiency. The objective of this study was to develop a method for rapid measurement of drought stress in soybean 

plants using a hyperspectral fluorescence imaging technique. Methods: Hyperspectral fluorescence images were obtained 

using UV-A light with 365 nm excitation. Two soybean cultivars under drought stress were analyzed. A partial least square 

regression (PLSR) model was used to predict drought stress in soybeans. Results: Partial least square (PLS) images were 

obtained for the two soybean cultivars using the results of the developed model during the period of drought stress 

treatment. Analysis of the PLS images showed that the accuracy of drought stress discrimination in the two cultivars was 

0.973 for an 8-day treatment group and 0.969 for a 6-day treatment group. Conclusions: These results validate the use of 

hyperspectral fluorescence images for assessing drought stress in soybeans.

Keywords: Detection, Drought stress, Fluorescence, Imaging, Soybean plant

Original Article Journal of Biosystems Engineering

J. of Biosystems Eng. 40(4):335-344. (2015. 12)
http://dx.doi.org/10.5307/JBE.2015.40.4.335

eISSN : 2234-1862 
pISSN : 1738-1266

*Corresponding author: Jongguk Lim

 Tel: +82-63-238-4117; Fax: +82-63-238-4105

 E-mail: limjg@korea.kr

Copyright ⓒ 2015 by The Korean Society for Agricultural Machinery
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0)

which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction

Global food security is of deep concern because of 

climate change, rapid human population growth, and 

reduced arable land around the world (Rahaman et al., 

2015). In the USA in 2012, 87% of soybean and corn 

arable lands were affected by drought, causing soybean 

and corn production to plummet by 25~30%; in turn, this 

caused an increase in global market prices for the crops. 

Environmental stresses on crops have intensified because 

of an increased frequency of factors such as drought and 

heat wave, which induce abnormal physiological reactions 

in crops that result in growth inhibition, reduced pro-

duction, or even plant death. One possible solution to 

these problems is the development of robust drought 

tolerant cultivars (Chang et al., 2011). 

Although a variety of breeding technologies are available, 

quantitative measurements of target factors in developed 

cultivars under different growth environments are difficult 

using these methods as they are generally very labor- 

intensive. Recently, to overcome this limitation, several 

studies have analyzed the relationship between genetic 

factors and environments by measuring the phenotypic 

features of growth over time using imaging and spect-

roscopic measurement technologies. Plant phenomics is 

the study of phenotypes using physiological and bio-

chemical characteristics of plants, often through use of 
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novel technologies. Such new technologies enable infor-

mation on growth characteristics such as color, length, 

leaf area, moisture contents, and chloroplast conditions 

to be measured nondestructively (Houle et al., 2010). 

A wide array of technologies can be used to obtain 

biometric information from plants in a non-destructive 

manner, for example, color imaging, fluorescence imaging, 

thermal imaging, near-infrared (NIR) imaging, and hypers-

pectral imaging (Nguyen et al., 2006; Manickavasagan et 

al., 2008; Duan et al., 2011; Shibayama et al., 2011; 

Rousseau et al., 2013). Chlorophyll fluorescence imaging 

has been employed to detect water stress in soybean, 

maize, wheat, strawberry, and Arabidopsis. In soybean, 

water stress responses have been monitored using red to 

far-red fluorescence ratio induced by UV light excitation 

at 420 nm (Caires et al., 2010). Likewise, chlorophyll 

fluorescence has been used to evaluate drought responses 

in Arabidopsis (Woo et al., 2008). Dahn et al. (1992) used 

laser excitation at 355 nm to generate a chlorophyll 

fluorescence ratio (F690/F735) that is related to drought 

stress in maize and wheat plants. 

Hyperspectral fluorescence imaging (HSFI) technology 

is a new spectroscopic technique that simultaneously 

acquires spectral and image information from each pixel 

unit of a target object or image for each wavelength. The 

HSFI technique can be used to analyze components in the 

leaf surfaces of plants or fluorescence expressed in plants 

(Kim et al., 2001).

In this study, we used hyperspectral fluorescence imaging 

with 365 nm UV-A excitation and a partial least square 

regression (PLSR) model to obtain rapid measurements 

of the drought stress in soybeans. In addition, prediction 

periods of drought stress in soybeans using the developed 

models were investigated. 

Materials and Methods

Materials 

In the present study, we used two soybean cultivars, 

William 82 (Cultivar I) and Houjaku Kuwazu (Cultivar II), 

to examine the effects of drought stress. Seeds for each 

cultivar were obtained from the Soybean Germplasm 

Collection Laboratory in USDA-ARS, which is affiliated 

with the U.S. National Plant Germplasm System. The 

Houjaku Kuwazu cultivar is a robust drought-tolerant 

cultivar; the William 82 cultivar is a high-yielding cultivar 

that is cultivated in the USA. Twenty seeds from each 

cultivar were germinated for one week, and seedlings 

were grown for three weeks in a growth chamber at 25°C, 

with 60% relative humidity, and a daily cycle of 15 h with 

a light intensity of 600 µmolm
-2

s
-1

 and 9 h of dark. Water 

was supplied once per day. After three weeks, the plants 

from each cultivar were separated into two groups: a 

control group that was supplied daily with water; and a 

drought stress group that did not receive water. To measure 

the effect of drought stress, hyperspectral fluorescence 

images were obtained from three plants of each control 

and treatment group after 2, 4, 6, 8, 10, 14, and 16 days at 

a two- or four-day interval. In order to consider only 

stress under the same growth conditions, the third branch 

from the root of plants with three leaves was excised. To 

minimize the impact of leaf removal, the petiole of the 

excised leaves was sealed with 0.06% agar to prevent 

water evaporation. Hyperspectral fluorescence images of 

the leaves were obtained within 10 minutes after excision. 

The same plants were used again in the experiment with 

a minimum of six days between sampling, thereby providing 

fluorescence image data from three sample groups with 

each treatment, i.e., (i) 2, 8, and 16 days, (ii) 4 and 10 days, 

and (iii) 6 and 14 days. The soil moisture contents in the 

control and drought stressed group after 16 days were 

69.5~75.5% relative humidity (RH) and 1.4~4.4% RH for 

Cultivar I, respectively, and 68.1~76.1% RH and 1.7~4.0% 

RH for Cultivar II, respectively.

Hyperspectral imaging system

The hyperspectral fluorescence imaging technique deve-

loped by the USDA Agricultural Research Service was 

used in this study (Figure 1). This system employs a 

highly sensitive electron multiplying charge-coupled device 

(EMCCD, MegaLuca R, ANDOR Technology, South Windsor, 

CT, USA) to acquire hyperspectral fluorescence images. 

The EMCCD device has an 8 × 8 µm pixel size, is cooled to 

-20°C by thermoelectric cooling, and sends 14-bit images 

at a speed of 12.5 MHz. An imaging spectrograph (VNIR 

Concentric Imaging Spectrograph, Headwall Photonics, 

Fitchburg, Massachusetts) and C mount lens (F1.9, 35 mm 

Compact Lens, Schneider Optics, Hauppauge, NY, USA) 

were fixed in front of the EMCCD. The field of view (FOV) 

of the images is limited by the slit size, which was set at 25 µm 

in this study. The line scan image acquired through the 

slit was spectrally radiated on the EMCCD surface through 

a diffraction grating; in this way, hyperspectral images 
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Figure 1.  The hyperspectral fluorescence imaging system.

were acquired for each wavelength bandwidth by summing 

the spectral radiations. Each line scan image therefore 

had spatial information horizontally and spectrum infor-

mation vertically. 

The light source consisted of four 10 W LED lights that 

emitted at a wavelength of 365 nm (i.e. UV-A). Two of the 

light sources were vertically tilted at 15° to excite the 

samples with the UV-A light. For the hyperspectral fluores-

cence images, 81 wavelength bands were measured in 

the wavelength range of 421~780 nm at intervals of 4.8 nm. 

Acquiring the hyperspectral image spectrum

In this study, samples of soybean leaves were fixed at 

the translation stage. Line scan images were obtained 

with 3 ms exposure time and 1 mm moving steps; 600 

lines were measured. Three samples from the same 

treatment groups of each cultivar were measured simul-

taneously. In fluorescence images from dark-adapted 

leaves, the early and middle parts of line-scan of a leaf 

have different light exposure times; as a result, fluores-

cence in the middle part of the line-scan may be decreased 

compared to that in the early part. Therefore, the fluores-

cence images used here were obtained from leaves after 5 

minutes light adaptation to exclude the influence of light 

exposure time on changes in fluorescence. Dark reference 

plate images, unexposed to a light source, were measured 

and fluorescence reference plate images were obtained 

from a plate where fluorescence was uniformly displayed. 

The fluorescence reference plate was premium white 

inkjet paper (Union Camp Co.) that exhibited uniform 

blue fluorescence (Kim et al., 2001).

The hyperspectral fluorescence images of the sample 

were corrected using the fluorescence reference plate 

images (to correct the intensity of fluorescence in the 

pixels of measured lines) and the dark reference plate 

images (to compensate for device noise). The corrected 

fluorescence images of soybean leaves were then 

converted using the following equation:

I(i) = (Is(i) - D(i))/(If(i) - Id(i))            (1)

where, I = corrected relative fluorescence image at the 

i
th

 wavelength

Is = sample hyperspectral fluorescence image at 

the i
th

 wavelength

If = hyperspectral fluorescence image of 

fluorescence plate at the i
th

 wavelength

Id = hyperspectral image of dark reference at the 

i
th

 wavelength

Only a soybean leaf part was extracted from the corrected 

hyperspectral fluorescence image of soybean leaf for 

acquiring the pixel spectrum and a mean value spectrum 

of the pixels. Nine mean spectra from three leaves of three 

different samples were obtained at each sampling interval 

in the drought stress treatment group and in the control 

group. 

We developed a prediction model to evaluate drought 

stress in soybeans based on a partial least squares 

regression (PLSR) analysis. This model used the mean 

spectrum from leaves of each soybean cultivar during the 

drought stress treatment period. The values of drought 

stress treatment and non-treatment were set to “1” and 

“0,” respectively. The prediction model was verified using 

a cross-validation method and the performance of the 

model was evaluated using the coefficient of determination 

(R
2
), the root mean square error of calibration (RMSEC), 

and the root mean square error of validation (RMSEV). 

Partial least square (PLS) images were used to verify 

the developed prediction model. PLS images were obtained 

by applying the PLSR model to hyperspectral fluorescence 

images of soybean leaves. Drought stress in the soybeans 

was identified using a pixel prediction value and mean 

prediction value derived from the PLS images. The PLS 

images consist of prediction values calculated by applying 

regression coefficients, which are weighted for each 
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(a)

Figure 2.  Average fluorescence spectra of extracted leaves from control and drought stress treated plants from two soybean cultivars: 
(a) Cultivar I, (b) Cultivar II. 

wavelength of the PLSR model for all pixel spectra, as 

expressed in the following equation: 

PLS Image = ∑
  







           (2)

where, Ii = i
th

 image of n spectral images 

Ri = regression coefficients of the PLSR model

C  = constant of the PLSR model 

The prediction accuracy from the PLS image was 

calculated using the optimum value from the distribution 

of PLS prediction values of pixels in non-treatment and 

treatment groups. The overall prediction accuracy was 

calculated using total accuracies of drought stress treatment 

and non-treatment groups, and sensitivity and specificity 

were calculated using predictive accuracies of drought 

stress treatment and non-treatment groups.

MATLAB (version 7.0.4, Mathworks, Natick, MA, USA) 

was used to perform data extraction and image data 

analysis of the acquired hyperspectral fluorescence image 

spectrum. PLSR model development and validation were 

carried out using Unscrambler v9.2 data analysis software 

(CAMO, Oslo, Norway).

Results and Discussion 

Spectral characteristics of soybean leaves

As described above, soybean plants from two cultivars 

were cultivated for 21 days and then assigned to two 

groups, one of which was then grown under drought stress 

and the other that was grown under normal conditions 

and acted as a control. Leaf samples at different times of 

treatment were obtained using the third branch with 
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(b)

Figure 2.  Average fluorescence spectra of extracted leaves from control and drought stress treated plants from two soybean cultivars: 
(a) Cultivar I, (b) Cultivar II (Continue). 

three leaves from the soil surface. The fluorescence spectra 

of control and drought stress plants at each sampling 

interval are shown in Figure 2. In the results, the wave-

lengths of the fluorescence peaks were 550, 660, and 730 

nm for the green, red, and far-red bands, respectively. 

These bands are related to the wavelengths that display 

chlorophyll a characteristics (Gross, 1991). In both culti-

vars, the drought stress-treated plants showed a reduction 

in the difference in fluorescence spectrum between leaves 

with time, in contrast to the control group. In contrast, 

control plants showed increased fluorescence intensity 

with time whereas the stress treated plants tended to 

show reduced or similar fluorescence intensities. The 

results here are comparable to those reported in a previous, 

study wherein it was found that total chlorophyll contents 

and chlorophyll a contents are reduced by increased 

moisture stress (Buschmann et al., 1998).

PLSR prediction model of drought stress 

A PLSR prediction model was developed to assess the 

relative effects of drought stress in the two soybean 

cultivars. The results from the drought stress prediction 

model using the mean spectrum of hyperspectral images 

of leaves at each sample point are presented Table 1. 

The analysis of plants from Cultivar I showed that the 

prediction model indicated that the 10-day sample had 

the lowest error among the different drought stress 

treatment periods. The results with cross-validation of 

this prediction model showed that R
2
 and RMSEV were 

0.989 and 0.055, respectively, when the optimum number 

of factors was 4. At the 8-day interval, the prediction 

model gave an R
2
 of 0.970 and RMSEV of 0.091; although 

these prediction errors were higher than for the 10-day 

plants, the optimum number of factors was lower at 1. As 

the drought stress period increased, the performance of 
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Table 1.  Results from the PLSR model to predict drought stress in soybean plants

Cultivar 2-day 4-day 6-day 8-day 10-day 14-day 16-day

Cultivar I

(William 82)

Rc

2
0.998 0.991 0.992 0.974 0.995 0.975 0.958

RMSEC 0.025 0.047 0.044 0.081 0.034 0.078 0.103

Rv

2
0.95 0.973 0.958 0.97 0.989 0.963 0.95

RMSEV 0.118 0.087 0.109 0.091 0.055 0.102 0.118

F 10 6 7 1 4 3 1

Cultivar II

(Houjaku Kuwazu)

Rc

2
0.999 0.949 0.937 0.959 0.934 0.962 0.946

RMSEC 0.0002 0.113 0.126 0.101 0.129 0.098 0.116

Rv

2
0.644 0.847 0.929 0.942 0.886 0.956 0.942

RMSEV 0.316 0.207 0.141 0.128 0.179 0.111 0.127

F 15 7 1 2 3 1 1

(a)

Figure 3.  Regression coefficients of PLSR models for (a) Cultivar I and (b) Cultivar II.

the prediction model improved in terms of reduction of 

the optimum number of factors and the determination 

error.

The analysis using the prediction model for Cultivar II 

plants showed that the 14-day sample interval had a 

relatively low error, with an R
2
 of 0.956 and RMSEV of 0.111, 

and an optimum number of factors of 1. The prediction 

accuracy improved for plants at 6-day or longer treatments 

compared to 4-day or shorter day treatments and the 

optimum number of factors was also reduced (Table 1). 

At the 10-day treatment interval, the prediction model 

gave relatively higher errors than at 6-days or at longer 

treatment times; however, as in cultivar I, the optimum 

number of factors was reduced and the prediction model 

performance improved with longer periods of drought 

stress treatment. 

Figure 3 shows the regression coefficients of the PLSR 

prediction models for Cultivars I and II. The figure shows 

representative peaks of regression coefficients derived 

from the results given in Table 1. The regression coefficients 
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(b)

Figure 3.  Regression coefficients of PLSR models for (a) Cultivar I and (b) Cultivar II (Continue).

Table 2.  Representative peaks of regression coefficients in the PLSR models

Number of optimal factor Treatment period Peak of regression coefficients

Cultivar I 

1 8-day, 16-day 686 nm, 737 nm

3 14-day 682 nm, 702 nm

4 10-day 682 nm, 753 nm

6 4-day 682 nm, 694 nm, 718 nm, 738 nm

7 6-day 682 nm, 694 nm, 718 nm, 738 nm

10 2-day 558 nm, 686 nm

Cultivar II

1 6-day, 14-day, 16-day 686 nm, 737 nm

2 8-day 682 nm, 746 nm

3 10-day 680 nm, 758 nm

7 4-day 682 nm, 698 nm, 738 nm

15 2-day 658 nm, 686 nm

of all models have peaks at around 686 nm or 738 nm 

(Table 2). These peaks are related to the wavelengths that 

display fluorescence characteristics of chlorophyll a (Gross, 

1991; Buschmann et al., 1998; Gitelson et al., 1998). 

Using the developed PLSR prediction model, PLS images 

were acquired and analyzed for the presence of drought 

stress (Figure 4). Table 3 presents the drought stress 

discrimination accuracy for each sampling interval using 

the pixel spectrum of the PLS images. In Cultivar I, the 

highest prediction accuracy occurred at the 16-day interval, 

and from 8-day or longer the prediction accuracy was 

greater than 0.964. In Cultivar II, the highest prediction 

accuracy was at the 14-day interval, and from 6-day, the 

predictive accuracy was 0.97 or higher; however, the 

10-day sample had higher accuracy than that of Cultivar I. 

Cultivar I had 0.81 or higher accuracy at 2-day and 4-day 

intervals, which showed better early prediction accuracy 

of drought stress than that of Cultivar II. This earlier 
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(a)

(b)

Figure 4.  PLS images obtained by the PLSR model from soybean leaves of control and drought stress treated plants: (a) Cultivar I, (b) 
Cultivar II. 

Table 3.  Prediction results of drought stress in soybean plants using PLS images 

Cultivar 2-day 4-day 6-day 8-day 10-day 14-day 16-day

Cultivar I

(William 82)

Sensitivity 0.916 0.952 0.967 0.995 0.993 0.992 0.999

Specificity 0.709 0.852 0.774 0.943 0.935 0.961 0.955

Predictive accuracy 0.813 0.902 0.871 0.969 0.964 0.976 0.977

Cultivar II 

(Houjaku Kuwazu)

Sensitivity 0.660 0.785 0.997 0.985 0.954 0.999 0.997

Specificity 0.737 0.757 0.950 0.955 0.836 0.970 0.963

Predictive accuracy 0.699 0.771 0.973 0.970 0.895 0.984 0.980



Mo et al. Detecting Drought Stress in Soybean Plants Using Hyperspectral Fluorescence Imaging
Journal of Biosystems Engineering • Vol. 40, No. 4, 2015 • www.jbeng.org

343

(a) (b)

Figure 5.  The mean value and standard deviation of pixel values of PLS images for control and drought stress samples at each treatment 
interval for the two cultivars: (a) Cultivar I, (b) Cultivar II.

prediction is attributable to higher sensitivities of Cultivar 

I at 2-day and 4-day, 0.916 and 0.952, respectively, as 

compared to Cultivar II. 

The PLS image is represented by the predicted value of 

each pixel constituting the sample using the PLSR model. 

The mean values and standard deviations of all pixel 

values in the PLS images for each treatment period of two 

cultivars of soybeans are shown in Figure 5. The likely 

reason for the low prediction accuracy at the early stage 

of drought stress treatment was the low specificity in 

discrimination accuracy as the control group showed a 

large variation between pixels (Figure 5). In drought-treated 

plants, this variation between pixels was large up to the 

6-day interval for Cultivar I and the 4-day interval for 

Cultivar II; the variation reduced with increased time of 

drought treatment. Indeed, the range of 0.048~0.146 in 

the drought stress treatment group at the 14-day interval 

was lower than the 0.289~0.357 range in the control. 

That is, in the early stages of drought stress, the affected 

part may differ depending on the position of the leaf, but 

as the stress period lengthened, the area of the leaf affected 

increased. The prediction value at the midrib of the leaf 

was higher than that at the tip of the leaf. Thus, drought 

stress in both Cultivars I and II could be discriminated 

within 8 days of the initiation of stress treatment by 

analysis of PLS images of soybean leaves.

Conclusions

In this study, a UV-A light source with an excitation 

wavelength of 365 nm was used to obtain hyperspectral 

fluorescence images to rapidly determine the presence of 

drought stress in soybean plants. A prediction model based 

on PLSR was used to indicate the presence of drought 

stress as it developed over a period of time in two soybean 

cultivars. Using the prediction model, PLS images could 

identify the presence of drought stress in the samples. 

The accuracy of drought stress discrimination in the two 

cultivars was 0.973 and 0.969 in the 8-day treatment 

group and 6-day treatment group, respectively. These 

results confirm the applicability of fluorescence image 

spectral analysis for determining drought stress in soybeans. 

In a future study, further samples will be used to validate 

the prediction model and drought stress assessment will 

be performed on leaves that have not been separated 

from the plants. 
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