• 제목/요약/키워드: Fluidized particles layer

검색결과 11건 처리시간 0.028초

유동입자층에서의 복사열전달 특성에 관한 연구 (A Study on the Radiative Heat Transfer Characteristics in the Fluidized Particles Layer)

  • 김금무;김용모;김경근
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제18권4호
    • /
    • pp.33-42
    • /
    • 1994
  • The radiative heat transfer analysis in the fluidized particles layer has important application in many technological areas such as combustion chambers at high pressure and temperature, plasma generators for nuclear fusion, MHD generator using pulverized coal and the liquid droplet radiator used to reject wasted heat from a power plant operating in space. To accurately model the radiation properties of the fluidized particles layer, it is necessary to know the radiation interchange factors of particles in each layer. But the solutions are usually not possible for the equations of radiative heat transfer because it has an inherent difficulty in treating the governing intergo- differential equations, which are derived from the remote effects of radiative heat transfer. In this study, the analysis uses the Monte Carlo simulation method with optical depth model to calculate the radiation interchange factors of particles in each layer with wall and with each other.

  • PDF

순환유동층 열교환기내 유동과 열전달 특성 (Characteristics of Fluid Flow and Heat Transfer in a Fluidized Bed Heat Exchanger)

  • 안수환;이병창;김원철;이윤표
    • 설비공학논문집
    • /
    • 제14권4호
    • /
    • pp.315-323
    • /
    • 2002
  • The commercial viability of heat exchanger is mainly dependent on their long-term fouling characteristics because the fouling increases the pressure loss and degrades the thermal performance of a heat exchanger. An experimental study was performed to investigate the characteristics of fluid flow and heat transfer in a fluidized bed heat exchanger with circulating various solid particles. The present work showed that the drag force coefficients of particles in the internal flow were higher than those in the external flow, in addition, the solid particle periodically hitting the tube wall broke the thermal boundary layer, and increased the rate of heat transfer. Particularly when the flow velocity was low, the effect was more pronounced.

TRISO 피복 입자에서 증착 조건이 탄화규소층의 특성에 미치는 영향 (Effect of Deposition Parameters on the Property of SiC Layer in TRISO-Coated Particles)

  • 박종훈;김원주;박정남;박경환;박지연;이영우
    • 한국재료학회지
    • /
    • 제17권3호
    • /
    • pp.160-166
    • /
    • 2007
  • TRISO coatings on $ZrO_{2}$ surrogate kernels were conducted by a fluidized-bed chemical vapor deposition (FBCVD) method. Effects of the deposition temperature and the gas flow rate on the properties of SiC layer were investigated in the TRISO-coated particles. Deposition rate of the SiC layer decreased as the deposition temperature increased in the temperature range of $1460^{\circ}-1550^{\circ}C$. At the deposition temperature of $1550^{\circ}C$ the SiC layer contained an excess carbon, whereas the SiC layers had stoichiometric compositions at $1460^{\circ}C\;and\;1500^{\circ}C$. Hardness and elastic modulus measured by a nanoindentation method were the highest in the SiC layer deposited at $1500^{\circ}C$. The SiC layer deposited at the gas flow rate of 4000 sccm exhibited a high porosity and contained large pores more than $1{\mu}m$, being due to a violent spouting of particles. On the other hand, the SiC layer deposited at 2500 sccm revealed the lowest porosity.

유동층 화학기상증착법으로 제조된 TRISO 피복입자의 ZrC 층 미세구조와 경도에 미치는 증착온도의 영향 (Effect of Deposition Temperature on Microstructure and Hardness of ZrC Coating Layers of TRISO-Coated Particles Fabricated by the FBCVD Method)

  • 고명진;김대종;김원주;조문성;윤순길;박지연
    • 한국세라믹학회지
    • /
    • 제50권1호
    • /
    • pp.37-42
    • /
    • 2013
  • Tristructural-isotropic (TRISO)-coated particles were fabricated by a fluidized-bed chemical vapor deposition (FBCVD) method for use in a very high temperature gas-cooled reactor (VHTR). ZrC as a constituent layer of TRISO coating layers was deposited by a chloride process using $ZrCl_4$ and $CH_4$ source gases in a temperature range of $1400^{\circ}C$ and $1550^{\circ}C$. The change in the microstructure of ZrC depending on the deposition temperature and its effect on the hardness were evaluated. As the deposition temperature increased to $1500^{\circ}C$, the grain size of the ZrC increased and the hardness of the ZrC decreased according to the Hall-Petch relationship. However, at $1550^{\circ}C$, the ZrC layer was highly non-stoichiometric and carbon-rich and did not obey the Hall-Petch relationship in spite of the decrease of the grain size. A considerable amount of pyrolytic carbon at the grain boundaries of the ZrC as well as coarse granular pyrolytic carbon were locally distributed in the ZrC layer deposited at $1550^{\circ}C$. Therefore, the hardness decreased largely due to the formation of a large amount of pyrolytic carbon in the ZrC layer.

기능성 미분말의 제조공정에 관한 연구 : III. 초임계 분출법에 의한 복합분체의 합성과 용출특성 (Preparation process of functional particles: III. Preparation of composite particles by rapid expansion of supercritical fluid solutions and release behavior)

  • 류한원;김영도;신건철
    • 한국결정성장학회지
    • /
    • 제9권1호
    • /
    • pp.55-59
    • /
    • 1999
  • 초임계 분출법을 이용하여 입자의 코팅을 행하였다. 핵입자로는 분무건조법으로 제조된 Microcapsule을 사용하였으며, 코팅 물질로는 녹는 점이 다른 두 종류의 파라핀을 사용하였다. 파라핀이 녹아 있는 초임계 $CO_{2}$ 용액은 공 기에 의해 유통중인 유통층 내부로 작은 직경의 노즐을 통해 분출된다. 이 때 추출조의 온도와 압력은 각각 $50~120^{\circ}C$, $150~200\;kg/\textrm{cm}^2$으로 변화시켰다. 이론적인 코팅 두께를 계산하였으며, 코팅층의 분석은 SEM과 FT-IR을 사용하였다. $Mg^{2+}$ ion의 용출특성은 원자홉광광도계를 사용하여 조사하였다.

  • PDF

유리탄소의 동시증착에 의한 TRISO 피복입자의 ZrC 코팅층 미세구조와 화학양론비 제어 (Microstructure of ZrC Coatings of TRISO Coated Particles by Codeposition of Free Carbon and Control of Stoichiometry)

  • 고명진;김대종;박지연;조문성;김원주
    • 한국세라믹학회지
    • /
    • 제50권6호
    • /
    • pp.446-450
    • /
    • 2013
  • TRISO coated particles with a ZrC barrier layer were fabricated by a fluidized-bed chemical vapor deposition (FBCVD) method for a use in a very high temperature gas-cooled reactor (VHTR). The ZrC layer was deposited by the reaction between $ZrCl_4$ and $CH_4$ gases at $1500^{\circ}C$ in an $Ar+H_2$ mixture gas. The amount of free carbon codeposited with in ZrC was changed by controlling the dilution gas ratio. Near-stoichiometric ZrC phase was also deposited when an impeller was employed to a $ZrCl_4$ vaporizer which effectively inhibited the agglomeration of $ZrCl_4$ powders during the deposition process. A near-stoichiometric ZrC coating layer had smooth surface while ZrC containing the free carbon had rough surface with tumulose structure. Surface roughness of ZrC increased further as the amount of free carbon increased.

고체 수송관이 있는 2 단 기포 유동층에서 붕괴 속도에 대한 하단 층 높이의 영향 (Effect of Lower Bed Height on Collapse Velocity in the Two-Stage Bubbling Fluidized-Bed with a Standpipe for Solid Transport)

  • 무하마드 샤쟈드 쿠람;최정후
    • Korean Chemical Engineering Research
    • /
    • 제56권6호
    • /
    • pp.864-870
    • /
    • 2018
  • 고체 수송관(standpipe, 내경 0.025 m)으로 연결된 2 단 기포 유동층(내경 0.1 m, 높이1.2 m)에서 붕괴 속도에 대한 하단 층 높이의 영향을 조사하였다. 기체로는 공기를 사용하였고, 고체로는 입도가 큰 입자(< $1000{\mu}m$, 겉보기 밀도 $3625kg/m^3$)와 입도가 작은 입자(< $147{\mu}m$, 겉보기 밀도 $4079kg/m^3$)를 혼합한 입자를 사용하였다. 작은 입자의 혼합비, 하단 유동층의 층 높이, 상단 유동층 분산판을 실험 변수로 고려하였다. 붕괴 속도는 하단 유동층의 정체 층 높이가 증가할수록 증가하였다. 그러나 작은 입도의 혼합비가 증가하면 이 효과가 감소하였다. 이 효과는 층 높이 증가에 따른 고체 수송관 압력 강하의 증가 때문이 아니라, 수송관 출구를 막는 농후상 굵은 입자 층 높이의 증가 때문으로 보였다. 상단 유동층 분산판 압력 강하의 증가는 붕괴 속도를 조금 감소시켰다. 붕괴 속도를 예측하는 개선된 상관식을 제안하였다.

피복입자핵연료에서 증착조건이 탄화규소층의 특성에 미치는 영향 (Effect of Deposition Parameters on the Property of Silicon Carbide Layer in Coated Particle Nuclear Fuels)

  • 김연구;김원주;여승환;조문성
    • 한국분말재료학회지
    • /
    • 제23권5호
    • /
    • pp.384-390
    • /
    • 2016
  • Tri-isotropic (TRISO) coatings on zirconia surrogate beads are deposited using a fluidized-bed vapor deposition (FB-CVD) method. The silicon carbide layer is particularly important among the coated layers because it acts as a miniature pressure vessel and a diffusion barrier to gaseous and metallic fission products in the TRISO-coated particles. In this study, we obtain a nearly stoichiometric composition in the SiC layer coated at $1400^{\circ}C$, $1500^{\circ}C$, and $1400^{\circ}C$ with 20 vol.% methyltrichlorosilane (MTS), However, the composition of the SiC layer coated at $1300-1350^{\circ}C$ shows a difference from the stoichiometric ratio (1:1). The density decreases remarkably with decreasing SiC deposition temperature because of the nanosized pores. The high density of the SiC layer (${\geq}3.19g/cm^2$) easily obtained at $1500^{\circ}C$ and $1400^{\circ}C$ with 20 vol.% MTS did not change at an annealing temperature of $1900^{\circ}C$, simulating the reactor operating temperature. The evaluation of the mechanical properties is limited because of the inaccurate values of hardness and Young's modulus measured by the nano-indentation method.

겔침전과 화학증착법에 의한 구형 UO2 입자와 TRISO 피복입자 제조 (Spherical UO2 Kernel and TRISO Coated Particle Fabrication by GSP Method and CVD Technique)

  • 정경채;김연구;오승철;조문성
    • 한국세라믹학회지
    • /
    • 제47권6호
    • /
    • pp.590-597
    • /
    • 2010
  • HTGR using a TRISO coated particles as nuclear raw fuel material can be used to produce clean hydrogen gas and process heat for a next-generation energy source. For these purposes, a TRISO coated particle was prepared with 3 pyro-carbon (buffer, IPyC, and OPyC) layers and 1 silicone carbide (SiC) layer using a CVD technique on a spherical $UO_2$ kernel surface as a fissile material. In this study, a spherical $UO_2$ particle was prepared using a modified sol-gel method with a vibrating nozzle system, and TRISO coating fabrication was carried out using a fluidized bed reactor with coating gases, such as acetylene, propylene, and methyltrichlorosilane (MTS). As the results of this study, a spherical $UO_2$ kernel with a sphericity of 1+0.06 was obtained, and the main process parameters in the $UO_2$ kernel preparation were the well-formed nature of the spherical ADU liquid droplets and the suitable temperature control in the thermal treatment of intermediate compounds in the ADU, $UO_3$, and $UO_2$ conversions. Also, the important parameters for the TRISO coating procedure were the coating temperature and feed rate of the feeding gas in the PyC layer coating, the coating temperature, and the volume fraction of the reactant and inert gases in the SiC deposition.