Browse > Article
http://dx.doi.org/10.3740/MRSK.2007.17.3.160

Effect of Deposition Parameters on the Property of SiC Layer in TRISO-Coated Particles  

Park, J.H. (Nuclear Materials Technology Development Division, Korea Atomic Energy Research Institute)
Kim, W.J. (Nuclear Materials Technology Development Division, Korea Atomic Energy Research Institute)
Park, J.N. (Nuclear Materials Technology Development Division, Korea Atomic Energy Research Institute)
Park, K.H. (Nuclear Materials Technology Development Division, Korea Atomic Energy Research Institute)
Park, J.Y. (Nuclear Materials Technology Development Division, Korea Atomic Energy Research Institute)
Lee, Y.W. (HTGR Fuel Development Division, Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Materials Research / v.17, no.3, 2007 , pp. 160-166 More about this Journal
Abstract
TRISO coatings on $ZrO_{2}$ surrogate kernels were conducted by a fluidized-bed chemical vapor deposition (FBCVD) method. Effects of the deposition temperature and the gas flow rate on the properties of SiC layer were investigated in the TRISO-coated particles. Deposition rate of the SiC layer decreased as the deposition temperature increased in the temperature range of $1460^{\circ}-1550^{\circ}C$. At the deposition temperature of $1550^{\circ}C$ the SiC layer contained an excess carbon, whereas the SiC layers had stoichiometric compositions at $1460^{\circ}C\;and\;1500^{\circ}C$. Hardness and elastic modulus measured by a nanoindentation method were the highest in the SiC layer deposited at $1500^{\circ}C$. The SiC layer deposited at the gas flow rate of 4000 sccm exhibited a high porosity and contained large pores more than $1{\mu}m$, being due to a violent spouting of particles. On the other hand, the SiC layer deposited at 2500 sccm revealed the lowest porosity.
Keywords
TRISO coating; silicon carbide; fluidized-bed chemical vapor deposition;
Citations & Related Records

Times Cited By SCOPUS : 3
연도 인용수 순위
1 A Technology Roadmap for Generation IV Nuclear Energy Systems, Generation IV International Forum, GIF-002-00 (2002)
2 G. K. Miller, D. A. Petti, D. J. Varacalle Jr. and J. T. Maki, J. Nucl. Mater., 317, 69 (2003)   DOI   ScienceOn
3 Y. J. Lee, D. J. Choi, J. Y. Park and G. W. Hong, J. Mater. Sci., 35, 4519 (2000)   DOI   ScienceOn
4 K. Minato and K. Fukuda, Adv. Mater. Manuf. Proc., 3 (4),617 (1988)   DOI   ScienceOn
5 K. Minato and K. Fukuda, J. Nucl. Mater., 149, 233 (1987)   DOI   ScienceOn
6 S. J. Xu, J. G Zhou, B. Yang and B. Z. Zhang, J. Nucl. Mater., 224, 12 (1995)   DOI   ScienceOn
7 R. J. Price, Nucl. Technol., 35, 320 (1977)
8 R&D Program Plan for the Very High Temperature Reactor (VHTR), Generation IV International Forum (2004)
9 T. D. Gulden, C. L. Smith and D. P. Harmon, Nucl. Technol., 16, 100 (1972)
10 H. Nabielek, W. Kuhnlein, W. Schenk, W. Heit, A. Christ and H. Ragoss, Nucl. Eng. Des., 121, 199 (1990)   DOI   ScienceOn
11 M. L. Hitchman and K. F. Jensen, Chemical Vapor Deposition-Principles and Applications, p. 31, Academic Press, London, England (1993)
12 W. -J. Kim, J. Y. Park, J. I. Kim, K. W. Hong and J. W. Ha, J. Kor. Ceram. Soc., 38 (4), 485 (2001)
13 D. J. Cheng, W. J. Shyy, D. H. Kuo and M. H. Han, J. Electrochem. Soc., 134 (12), 3145 (1987)   DOI
14 T. D. Gulden, J. Am. Ceram. Soc., 51, 424 (1968)   DOI