• Title/Summary/Keyword: Fluidized Bed Combustor

Search Result 86, Processing Time 0.024 seconds

Characterization of Heavy Metals Including Mercury and Fine Particulate Emitted from a Circulating Fluidized Bed Power Plant Firing Anthracite Coals (무연탄 순환유동층 발전소로부터 배출되는 수은을 포함한 중금속 및 미세분진의 배출 특성)

  • Kim, Jeong-Hun;Yoo, Jong-Ik;Seo, Yong-Chil
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.268-274
    • /
    • 2010
  • Emission of heavy metals as hazardous air pollutants has been focused with tightening regulatory limits due to their hazardousness. Measurements and characteristic investigations of heavy metals emitted from a commercial power plant burning anthracite coal have been carried out. The plant consists of a circulating fluidized bed combustor, a cyclone, a boiler and an electrostatic precipitator(ESP) in series. Dust and gaseous samples were collected to measure main heavy metals including gaseous mercury before ESP and at stack. Dust emissions as total particulate matter (TPM), PM-10 and PM-2.5 at inlet of ESP were very high with 23,274, 9,555 and $7,790mg/Sm^3$, respectively, as expected, which is much higher than those from pulverized coal power plants. However TPM at stack was less than $0.16mg/Sm^3$, due to high dust removal efficiency by ESP. Similarly heavy metals emission showed high collection efficiency across ESP. From particle size distribution and metal enrichment in sizes, several metal concentrations could be correlated with particle size showing more enrichment in smaller particles. Mercury unlike other solid metals behaved differently by emitting as gaseous state due to high volatility. Removal of mercury was quite less than other metals due to it's volatility, which was 68% only. Across ESP, speciation change of mercury from elemental to oxidized was clearly shown so that elemental mercury was half of total mercury at stack unlike other coal power plants which equipped wet a scrubber.

Electrostatic Precipitability of the Coal Fly-Ash by the Pilot Scale Test

  • Ahn, Kook-Chan;Kim, Bong-Hwan;Jang, Yang-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.5
    • /
    • pp.602-612
    • /
    • 2001
  • The equation of the particle collection efficiency proposed by Deutsch has been modified through the various experiments to correct the errors caused by the assumptions made for the equation. In order to get an modified Deutsch equation that can be applied to real conditions, a pilot scale electrostatic precipitator is used. The effects of operational variables on the particle collection efficiency are evaluated. Particle resistivity, gas temperature, moisture contents in gas, gas velocity and particle concentration are used as the operational variables. Two different types of coal fly-ash obtained from the fluidized bed combustor and the pulverized coal combustor are used as test particulate to evaluate the effect of the physiochemical and electrical characteristics of the particle on the particle collection efficiency. The experimental results are fitted with the modified Deutsch equation made by Matts-Ohnfeldt and the extended Deutsch equation made by E. C. Potter to evaluate the effect of the particle characteristics and the operation conditions on the particle collection efficiency of the electrostatic precipitator.

  • PDF

Air-staging Effect for NOx Reduction in Circulating Fluidized Bed Combustion of Domestic Unused Biomass (국내 미이용 바이오매스 순환유동층 연소에서 NOx 저감을 위한 air-staging 효과)

  • Yoon, Sang-Hee;Beak, Geon-Uk;Moon, Ji-Hong;Jo, Sung-Ho;Park, Sung-Jin;Kim, Jae-Young;Seo, Myung-Won;Yoon, Sang-Jun;Yoon, Sung-Min;Lee, Jae-Goo;Kim, Joo-Sik;Mun, Tae-Young
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.127-137
    • /
    • 2021
  • Air emission charge for nitrogen oxide as a precursor of fine dust has been introduced and implemented within the country from 2020. Therefore, the development of economical combustion technology for NOx reduction has got more needed urgently. This study investigated the air-staging effect as a way to reduce the NOx during combustion of domestic unused forest biomass, recently possible to secure REC (Renewable Energy Certification) as a substitute for overseas wood pellets in a 0.1 MWth circulating fluidized bed combustion test-rig. Operating conditions were comparison with and without air-staging, the supply position of tertiary air (6.4 m, 8.1 m, 9.4 m in the combustor) and variation of air-staging ratio (Primary air:Secondary air:Tertiary air=91%:9%:0%, 82%:9%:9%, 73%:9%:18%). NO and CO concentrations in flue gas, profiles of temperature and pressure at the height of the combustion, unburned carbon in sampled fly ash and combustion efficiency on operating conditions were evaluated. As notable results, NO concentration with air-staging application under tertiary air supply at 9.4 m in the combustor reduced 100.7 ppm compared to 148.8 ppm without air-staging while, CO concentration increased from 52.2 ppm without air-staging to 99.8 ppm with air-staging. However, among air-staging runs, when tertiary air supply amount at 6.4 m in the combustor increased by air-staging ratio (Primary air:Secondary air:Tertiary air=73%:9%:18%), NO and CO concentrations decreased the lowest 90.8 ppm and 66.1 ppm, respectively. Furthermore, combustion efficiency at this condition was improved to 99.3%, higher than that (98.3%) of run without air-staging.

A Study of Nitrous Oxide Decomposition using Calcium Oxide (Calcium Oxide를 이용한 N2O 분해에 관한 CO2의 영향 연구)

  • Paek, Jin-Young;Park, Yeong-Sung;Shun, Dowon;Bae, Dal-Hee
    • Korean Chemical Engineering Research
    • /
    • v.40 no.6
    • /
    • pp.746-751
    • /
    • 2002
  • Fluidized bed combustion is a coal combustion technology that can reduce both SOx and NOx emission; SOx is removed by limestone that is fed into the combustion chamber and the NOx is reduced by low temperature combustion in a fluidized bed combustor and air stepping, but $N_2O$ generation is quite high. $N_2O$ is not only a greenhouse gas but also an agent of ozone destruction in the stratosphere. The calcium oxide(CaO) is known to be a catalyst of $N_2O$ decomposition. This study of $N_2O$ decomposition reaction in fixed bed reactor packed over CaO bed has been conducted. Effects of parameters such as concentration of inlet $N_2O$ gas, reaction temperature, CaO bed height and effect of $CO_2$, NO, $O_2$ gas on the decomposition reaction have been investigated. As a result of the experiment, it has been shown that $N_2O$ decomposition reaction increased with the increasing fixed bed temperature. While conversion of the reaction was decreased with increasing $CO_2$ concentration. Also, under the present of NO, the conversion of $N_2O$ decomposition is decreased. From the result of kinetic study gained the heterogeneous reaction rate on $N_2O$ decomposition. In the case of $N_2O$ decomposition over CaO, heterogeneous reaction rate is. $\frac{d[N_2O]}{dt}=\frac{3.86{\times}10^9{\exp}(-15841/R)K_{N_2O}[N_2O]}{(1+K_{N_2O}[N_2O]+K_{CO_2}[CO_2])}$. In this study, it is found that the calcium oxide is a good catalyst of $N_2O$ decomposition.

Effects of Operating Variables on Separation Rate and Separation Efficiency in Ash Separator for Solid Fuel Chemical Looping Combustor (고체연료 매체순환연소기를 위한 회재분리기에서 분리속도 및 분리효율에 미치는 조업변수들의 영향)

  • RYU, HOJUNG;LEE, DONGHO;YOON, JOOYOUNG;JANG, MYOUNGSOO;BAE, DALHEE;PARK, JAEHYEON;BAEK, JEOMIN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.2
    • /
    • pp.211-219
    • /
    • 2016
  • To develop an ash separator for the solid fuel chemical looping combustion system, effects of operating variables such as solid injection nozzle velocity, diameter of solid injection nozzle, gap between solid injection line and vent line, vent line inside diameter, and solid intake height on solid separation rate and solid separation efficiency were measured and discussed using heavy and coarse particle and light and fine particles mixture as bed material in an acrylic fluidized bed apparatus. The solid separation rate increased as the solid injection nozzle velocity and the diameter of solid injection nozzle increased. However, the solid separation rate decreased as the gap between solid injection line and vent line, the vent line inside diameter, and the solid intake height increased. The solid separation efficiency was in inverse proportion to the solid separation rate. In this study, we could get high solid separation rate up to 2.39 kg/hr with 91.6% of solid separation efficiency.

A Study of Co-Combustion Characteristics of North Korean Anthracite and Bituminous Coal in 2 MWe CFBC Power Plant (2 MWe 순환유동층 발전 플랜트에서 유연탄과 북한 무연탄 혼소시험 특성 연구)

  • Han, Keun-hee;Hyun, Ju-soo;Choi, Won-kil;Lee, Jong-seop
    • Korean Chemical Engineering Research
    • /
    • v.47 no.5
    • /
    • pp.580-586
    • /
    • 2009
  • In this study, co-combustion characteristics of Chinese bituminous coal and North Korean anthracite were investigated using a 2 MWe scale circulating fluidized bed power plant. At first, the combustion efficiency of bituminous coal of China and Australia as a function of excess air ratio and temperature were observed. The results showed that the combustion efficiency was influenced by particle size and volatile content of coal, the combustion efficiency of Chinese bituminous coal was over 99.5%. The unburned carbon particles from fly ash and bottom ash were a content 5~7% and 0.3%, respectively. The combustion efficiency with the mixture ratio 20% of bituminous coal and anthracite decreased over 5% because of the increase of entrained particles by a small average particle size of anthracite in the combustor. However, the outlet concentration of $SO_2$ and $NO_x$ was not changed remarkably. The concentrations of the typical air pollutants such as $NO_x$ and $SO_2$ were 200~250 ppm($O_2$ 6%), 100~320 ppm($O_2$ 6%) respectively. The outlet concentration of $NO_x$ was decreased to 30~65% with $NH_3$ supplying rate of 2~13 l/min in SCR process. The $SO_x$ removal efficiency was up to 70% by in-furnace desulfurization using limestone with Ca/S molar of approximately 6.5. With wet scrubbing using $Mg(OH)_2$ as absorbent, the $SO_x$ removal efficiency reached 100% under near pH 5.0 of scrubbing liquid.

The Feasibility Study for Utilization of Blended Cement as a Activator of Bottom Ash from Circulating Fluidized Bed Combuster Boiler (순환유동층 보일러 바텀애시의 혼합시멘트 자극제 활용을 위한 타당성 연구)

  • Park, JongTak;Jung, Gwon Soo;Kang, Chang Ho;Oh, Hongseob
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.3
    • /
    • pp.255-262
    • /
    • 2020
  • Blended cement with fly ash and bottom ash from Circulating Fluidized Bed Combustor boiler(CFBC) burned at a low temperature, can be high heat of hydration and abnormal setting caused by higher volumn contents of Fe2O3, free-CaO, SO3. In this study, the ground CFBC bottom ash powder mixed with blast furnace slag was used as substitute activator of gypsum and recycled iron slag was produced from mix and pulverized by ball mill to increase the recycling rate. The effect on compressive strength of cements with the mixture of original and hydrated bottom ash mixtures with BFS with small water, respectively, was analyzed, and it was found that the hydrated bottom ash activator was more effective in initial strength development. To improve the initial strength of blended cement, an activator mixed with a blast furnace slag and bottom ash mixing ratio of 5:95 and 10:90, respectively, the slag cement by about 6%, and it was analyzed to develop an initial strength similar to gypsum as a conventional activator.

Re-carbonation of Calcined Limestone Under Oxy-Circulating Fluidized Bed Combustion Conditions (순산소 순환유동층 연소 조건에서 생석회의 재탄산화 반응)

  • Kim, Ye Bin;Gwak, You Ra;Keel, Sang In;Yun, Jin Han;Lee, See Hoon
    • Korean Chemical Engineering Research
    • /
    • v.56 no.6
    • /
    • pp.856-863
    • /
    • 2018
  • In order to investigate the re-carbonation behaviors of limestones in an oxy-circulating fluidized bed combustor (Oxy-CFBC), the re-carbonation characteristics of domestic 4 different limestone samples were analyzed in a thermogravimetric analyzer (TGA-N1000) with the higher concentration of $CO_2$. Effect of reaction temperature ($600{\sim}900^{\circ}C$) and $CaCO_3$ content (77~95%) of limestones were determined and the mass change of the CaO was observed. Under the temperature of $800^{\circ}C$, the conversion rate increased with increasing reaction temperature. However, the conversion rate decreased with increasing reaction temperature over $800^{\circ}C$. In the case of $CaCO_3$ content, the conversion was remarkably different at $870^{\circ}C$. In addition, reaction rate equations for simulating the re-carbonation of limestone by using gas solid reaction models were proposed in this study.

A Basic Study on the Development of Backfill Material with Fly Ash and Bottom Ash of Circulating Fluid Bed Combustion (순환유동층보일러의 Fly Ash, Bottom Ash를 활용한 채움재 개발에 관한 기초연구)

  • Cho, Yong-Kwang;Lee, Yong-Mu;Nam, Seong-Young;Kim, Chun-Sik;Seo, Shin-Seok;Jo, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.1
    • /
    • pp.25-31
    • /
    • 2018
  • In this study, the Controlled Low Strength Material (CLSM) was investigated to utilize the bottom ash and fly ash generated in the Circulating Fluidized Bed Combustor (CFBC). It was confirmed that the CFBC fly ash (CFBC-F) and CFBC bottom ash (CFBC-B) had an irregular particle shape through SEM measurement. According to the results of the hazard analysis, it was also confirmed that they were environmentally safe. In the case of mixing with CFBC-F, the unit quantity was increased. Regarding the rate of change of length, shrinkage in the range of -0.05~0.50% occurred in the air dry curing condition and expansion in the range of 0.1~0.6% in the sealed curing condition. Compressive strength was increased in the sealed curing condition compared to the air dry curing condition because there was enough moisture for hydration reaction in the long term. Therefore, the results of this study are likely be used as basic research data of mine filler materials.

Evaluation of Economic Feasibility of Power Generation System using Waste Woody Biomass in a CFBC Plant (순환유동층연소로에서 폐목질계 바이오매스를 이용한 발전 시스템의 경제성 평가)

  • Kim, Sung-June;Nam, Kyung-Soo;Lee, Jae-Sup;Seo, Seong-Seok;Lee, Kyeong-Ho;Yoo, Kyung-Seun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.1
    • /
    • pp.39-44
    • /
    • 2010
  • Economic feasibility of power generation system using waste woody biomass in a circulating fluidized bed combustor has been investigated. Effects of important variables such as capital investment, cost of waste wood, certified emission reduction(CER), system marginal price(SMP) on the benefit of business have been analyzed. Internal rate of return(IRR) was predicted as 16.67%, which implicates the business is promising based on the assumptions such as SMP of 99 Won/kWh, capital cost of 10.65 billion won, and complimentary providing of waste wood. Major factors affecting the benefit of business were as follows; system marginal price, operational rate, capital investment, expenditure of waste wood, certified emission reduction. In addition, it must be necessary to consider CHP power plant providing steam as one of the means to diversify sales network, for the management of the business risk.