DOI QR코드

DOI QR Code

Re-carbonation of Calcined Limestone Under Oxy-Circulating Fluidized Bed Combustion Conditions

순산소 순환유동층 연소 조건에서 생석회의 재탄산화 반응

  • Kim, Ye Bin (Department of Mineral Resources and Energy Engineering, Chonbuk National University) ;
  • Gwak, You Ra (Department of Mineral Resources and Energy Engineering, Chonbuk National University) ;
  • Keel, Sang In (Environment Systems Research Division, Korea Institute of Machinery and Materials (KIMM)) ;
  • Yun, Jin Han (Environment Systems Research Division, Korea Institute of Machinery and Materials (KIMM)) ;
  • Lee, See Hoon (Department of Mineral Resources and Energy Engineering, Chonbuk National University)
  • 김예빈 (전북대학교 자원에너지공학과) ;
  • 곽유라 (전북대학교 자원에너지공학과) ;
  • 길상인 (한국기계연구원 환경기계연구실) ;
  • 윤진한 (한국기계연구원 환경기계연구실) ;
  • 이시훈 (전북대학교 자원에너지공학과)
  • Received : 2018.07.27
  • Accepted : 2018.10.04
  • Published : 2018.12.01

Abstract

In order to investigate the re-carbonation behaviors of limestones in an oxy-circulating fluidized bed combustor (Oxy-CFBC), the re-carbonation characteristics of domestic 4 different limestone samples were analyzed in a thermogravimetric analyzer (TGA-N1000) with the higher concentration of $CO_2$. Effect of reaction temperature ($600{\sim}900^{\circ}C$) and $CaCO_3$ content (77~95%) of limestones were determined and the mass change of the CaO was observed. Under the temperature of $800^{\circ}C$, the conversion rate increased with increasing reaction temperature. However, the conversion rate decreased with increasing reaction temperature over $800^{\circ}C$. In the case of $CaCO_3$ content, the conversion was remarkably different at $870^{\circ}C$. In addition, reaction rate equations for simulating the re-carbonation of limestone by using gas solid reaction models were proposed in this study.

순산소 순환유동층 보일러에서 탈황을 위해 이용되는 석회석의 재탄산화 거동을 분석하기 위하여, 상용 순환유동층 보일러에서 이용되는 석회석 4종의 재탄산화 반응 특성을 열중량분석기(TGA-N1000)에서 고농도의 $CO_2$ 가스를 이용하여 분석하였다. 생석회의 재탄산화 반응은 반응온도($600{\sim}900^{\circ}C$), 석회석의 $CaCO_3$ 함량(77~95%) 등의 조건에 따른 질량 변화를 통해 고찰되었다. $600{\sim}800^{\circ}C$의 온도 영역에서는 반응 온도가 증가함에 따라 전환율이 증가하였고, $850{\sim}900^{\circ}C$ 에서는 반응 온도가 증가함에 따라 전환율이 감소하는 경향이 발견되었다. $CaCO_3$ 함량의 경우, $870^{\circ}C$의 반응온도에서 뚜렷한 전환율의 차이를 보였다. 또한 기-고체반응속도 모델들에 적용하여 석회석의 재탄산화 반응을 모사하는 반응속도식을 제시하였다.

Keywords

HHGHHL_2018_v56n6_856_f0001.png 이미지

Fig. 1. Thermodynamic equilibrium curve of CaCO3 calcination.

HHGHHL_2018_v56n6_856_f0002.png 이미지

Fig. 2. Conversion of re-carbonation with variation of time at different temperature of four limestones (a) A (b) B (c) C and (d) D.

HHGHHL_2018_v56n6_856_f0003.png 이미지

Fig. 3. SEM images (a) CaO and (b) CaCO3 from limestones A.

HHGHHL_2018_v56n6_856_f0004.png 이미지

Fig. 4. Reaction temperature versus final conversion.

HHGHHL_2018_v56n6_856_f0005.png 이미지

Fig. 5. Reactivity of limestone A through (a) SCM and (b) VRM.

HHGHHL_2018_v56n6_856_f0006.png 이미지

Fig. 6. Arrhenius plots of four limestones (a) A, (b) B, (c) C and (d) D.

Table 1. Chemical analysis of the limestones

HHGHHL_2018_v56n6_856_t0001.png 이미지

Table 2. Frequency Factor and Activation Energy

HHGHHL_2018_v56n6_856_t0002.png 이미지

Table 3. Rate equation of re-carbonation

HHGHHL_2018_v56n6_856_t0003.png 이미지

References

  1. Gwak, Y. R., Kim, Y. B., Gwak, I. S. and Lee, S. H., "Economic Evaluation of Synthetic Ethanol Production by Using Domestic Biowastes and Coal Mixture," Fuel, 213, 115-122(2018). https://doi.org/10.1016/j.fuel.2017.10.101
  2. Shin, J. H., Lee, L. S. and Lee, S. H., "Economic Assessment of a Indirect Liquefaction Process Using a Gasification with Petroleum Coke/coal Mixtures", Korean Chem. Eng. Res., 54, 501-509 (2016). https://doi.org/10.9713/kcer.2016.54.4.501
  3. Lee, S. H., Kim, J. M., Eom, W. H., Ryi, S. K., Park, J. S. and Baek, L. H., "Development of Pilot WGS/multi-layer Membrane for $CO_2$ Capture," Chem. Eng. J., 207-208, 521-525(2012). https://doi.org/10.1016/j.cej.2012.07.013
  4. Lee, S. H., Park, S. T., Lee, R. S., Hwang, J. H. and Sohn, J. M., "Water Gas Shift Reaction in a Catalytic Bubbling Fluidized Bed Reactor," Korean J. Chem. Eng., 33, 3523-3528(2016). https://doi.org/10.1007/s11814-016-0208-1
  5. Garcia-Labiano, F., Rufas, A., F. de Diego, L., de las Obras-Loscertales, M., Gayan, P., Abad, A. and Adanez, J., "Calcium-based Sorbents Behaviour During Sulphation at Oxy-fuel Fluidised Bed Combustion Conditions," Fuel, 90, 3100-3108(2011). https://doi.org/10.1016/j.fuel.2011.05.001
  6. Jia, L., Tan, Y. and Anthony, E. J., "Emission of $SO_2$ and NOx During Oxy-fuel CFB Combustion Tests in a Mini-circulating Fluidized Bed Combustion Reactor," Energy Fuels, 24, 910-915 (2010). https://doi.org/10.1021/ef901076g
  7. Tian, L., Yang, W., Chen, Z., Wang, X., Yang, H. and Chen, H., "Sulfur Behavior During Coal Combustion in Oxy-fuel Circulating Fluidized Bed Condition by Using TG-FTIR," J. Energy Inst., 89(2), 264-270(2016). https://doi.org/10.1016/j.joei.2015.01.020
  8. Li, W., Li, S., Xu, M. and Wang, X., "Study on the Limestone Sulfation Behavior Under Oxy-fuel Circulating Fluidized Bed Combustion Condition," J. Energy Inst., 91(3), 358-368(2018). https://doi.org/10.1016/j.joei.2017.02.005
  9. Liljedahl, G., Turek, D., Nsakala, N., Mohn, N., Fout, T., "Alstom's Oxygen-fired Cfb Technology Development Status for $CO_2$ Mitigation," In:Proceedings of the 31st International Technical Conference on Coal Utilization & Fuel Systems.
  10. Ramezani, M., Tremain, P., Doroodchi, E., Moghtaderi, B., "Determination of Carbonation/calcination Reaction Kinetics of a Limestone Sorbent in low $CO_2$ Partial Pressures Using TGA Experiments," E5nergy Procedia, 114, 259-270(2017). https://doi.org/10.1016/j.egypro.2017.03.1168
  11. Shin, J. H., Kim, Y. R., Kook, J. W., Gwak, I. S., Park, K. I., Lee, J. M. and Lee, S. H., "Desulfurization Characteristics of Domestic Limestones Through Simultaneous Calcination and Desulfurization Reaction," Appl. Chem. Eng., 26, 557-562(2015). https://doi.org/10.14478/ace.2015.1071
  12. Lee, S. H. and Lee, J. M., "Introduction and Current Status of Ultra Supercritical Circulating Fluidized Bed Boiler," KEPCO J., 2, 211-221(2016).
  13. Jeong, S. H., Lee, K. S., Keel, S. I., Yun, J. H., Kim, Y. J. and Kim, S. S., "Mechanisms of Direct and in-direct Sulfation of Limestone," Fuel, 161, 1-11(2015). https://doi.org/10.1016/j.fuel.2015.08.034
  14. Chen, H. and Zhao, C., "$CO_2$ Capture Performance of Calciumbased Sorbents in the Presence of $SO_2$ Under Pressurized Carbonation," Chem. Eng. Technol., 39(6), 1058-1066(2016). https://doi.org/10.1002/ceat.201500465
  15. Wang, L., Li, S. and G, Eddings, E., "Fundamental Study of Indirect vs Direct Sulfation Under Fluidized Bed Conditions," Ind. Eng. Chem. Res., 54, 3548-3555(2015). https://doi.org/10.1021/ie504774r
  16. Kochel, A., Cieplinska, A. and Szymanek, A., "Flue Gas Desulfurization in Oxygen-enriched Atmospheres Using Modified Limestone Sorbents," Energy fuels, 29, 331-336(2015). https://doi.org/10.1021/ef5021439
  17. Wang, C., Jia, L., Tan, Y. and Anthony, E. J., "Carbonation of Fly Ash in Oxy-fuel CFB Combustion," Fuel, 87, 1108-1114(2008). https://doi.org/10.1016/j.fuel.2007.06.024
  18. Wang, C., Jia, L. and Tan, Y., "Simultaneous Carbonation and Sulfation of CaO in Oxy-fuel Circulating Fluidized Bed Com-Bustion," Chem. Eng. Technol., 34(10), 1685-1690(2011). https://doi.org/10.1002/ceat.201000570
  19. Symonds, R. T., Lu, D. Y., Macchi, A., Hughes, R. W. and Anthony, E. J., "$CO_2$ Capture from Syngas Via Cyclic Carbonation/calcination for a Naturally Occuring Limestone:modeling and Benchscale Testing," Chem. Eng. Sci., 64, 3536-3543(2009). https://doi.org/10.1016/j.ces.2009.04.043
  20. Kook, J. W., Gwak, I. S., Gwak, Y. R., Seo, M. W. and Lee, S. H., "A Reaction Kinetic Study of $CO_2$ Gasification of Petroleum Coke, Coals, and Mixtures," Korean J. Chem. Eng., 34, 3092-3101 (2017). https://doi.org/10.1007/s11814-017-0214-y
  21. Wen, C., "Noncatalytic Heterogeneous Solid-fluid Reaction Models," Ind. Eng. Chem., 60, 34-54(1968).
  22. Ishida, M. and Wen, C., "Comparison of Kinetic and Diffusional Models for Solid-gas Reactions," AIChE J., 14, 311-317 (1968). https://doi.org/10.1002/aic.690140218
  23. Kasaoka, S., Sakata, Y. and Tong, C., "Kinetic Evaluation of the Reactivity of Various Coal Chars for Gasification with Carbon Dioxide in Comparison with Steam," Int. Chem. Eng., 25(1), (1985).
  24. Sun, P., Grace, J. R., Lim, C. J. and Anthony, E. J., "Determination of Intrinsic Rate Constants of the CaO-$CO_2$ Reaction," Chem. Eng. J., 63, 47-56(2008). https://doi.org/10.1016/j.ces.2007.08.055
  25. Abanades, J. C. and Alvarez, D., "Conversion Limits in the Reaction of $CO_2$ with Lime," Energy & Fuels, 17, 308-315(2003). https://doi.org/10.1021/ef020152a
  26. Obras-Loscertales, M., F. Diego, L., Garcia-Labiano, F., Rufas, A., Abad, A., Gayan, P. and Adanez, J., "Sulfur Retention in An Oxyfuel Bubbling Fluidized Bed Combustor:Effect of Coal Rank, Type of Sorbent and $O_2/CO_2$ Ratio," Fuel, 137, 384-392(2014). https://doi.org/10.1016/j.fuel.2014.07.097
  27. Kim, Y. B., Gwak, Y. R., Keel, S. I., Yun, J. H. and Lee, S. H., "Direct Desulfurization of Limestones Under Oxy-circulating Fluidized Bed Combustion Conditions," Che. Eng. J., https://doi.org/10.1016/j.cej.2018.08.036.