• Title/Summary/Keyword: Fluid-Structure Interaction analysis technique

Search Result 74, Processing Time 0.024 seconds

FLUID-STRUCTURE INTERACTION IN A U-TUBE WITH SURFACE ROUGHNESS AND PRESSURE DROP

  • Gim, Gyun-Ho;Chang, Se-Myoung;Lee, Sinyoung;Jang, Gangwon
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.633-640
    • /
    • 2014
  • In this research, the surface roughness affecting the pressure drop in a pipe used as the steam generator of a PWR was studied. Based on the CFD (Computational Fluid Dynamics) technique using a commercial code named ANSYS-FLUENT, a straight pipe was modeled to obtain the Darcy frictional coefficient, changed with a range of various surface roughness ratios as well as Reynolds numbers. The result is validated by the comparison with a Moody chart to set the appropriate size of grids at the wall for the correct consideration of surface roughness. The pressure drop in a full-scale U-shaped pipe is measured with the same code, correlated with the surface roughness ratio. In the next stage, we studied a reduced scale model of a U-shaped heat pipe with experiment and analysis of the investigation into fluid-structure interaction (FSI). The material of the pipe was cut from the real heat pipe of a material named Inconel 690 alloy, now used in steam generators. The accelerations at the fixed stations on the outer surface of the pipe model are measured in the series of time history, and Fourier transformed to the frequency domain. The natural frequency of three leading modes were traced from the FFT data, and compared with the result of a numerical analysis for unsteady, incompressible flow. The corresponding mode shapes and maximum displacement are obtained numerically from the FSI simulation with the coupling of the commercial codes, ANSYS-FLUENT and TRANSIENT_STRUCTURAL. The primary frequencies for the model system consist of three parts: structural vibration, BPF(blade pass frequency) of pump, and fluid-structure interaction.

Numerical Analysis and Optimum Design of Disposable Drug Infuser Using Fluid-Structure Interaction Technique (유체-구조 상호작용기법을 이용한 일회용 약물주입기의 성능 해석 및 최적 설계)

  • Kim, Heon-Young;Kim, Hak-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1595-1602
    • /
    • 2010
  • A disposable drug infuser is used to provide drugs to patients who are not hospitalized; in this infuser, an elastic recovery force is exerted by a diaphragm made of a rubber-like materialsuch that a constant amount of drugs is provided to a patient. The drug infuser has to control the speed and amount of drugs to be released, as well as the overall duration for which they are to be administered. However, in a drug infuser with an elastic diaphragm, the infusion pressure depends on the amount of drug remaining within the infuser, and the amount of drug infused gradually decreases as the amount remaining in the infuser decreases. In this study, a finite element procedure involving the application of the fluid-structure interaction technique was developed and the performance of the elastic type disposable drug infuser was analyzed. The optimum design for ensuring that the infusion pressure remains constant throughout the duration of usage, including during infusion and discharge, was determined by this procedure.

Fluid-Structure Interaction (FSI) Modal Analysis to Avoid Resonance of Cylinder Type Vertical Pump at Power Plant (원통형 수직 펌프의 공진회피를 위한 접수진동해석)

  • Lee, Jae-Hwan;Wang, Ji-Teng;Maring, Kothilngam
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.4
    • /
    • pp.321-329
    • /
    • 2018
  • Resonance phenomena occurs at large vertical pump which is operating to cool down the hot steam using sea water in the power plant. To avoid the resonance, the natural frequency needs to be isolated about 20% from motor operating speed. Yet, excessive vibration occurs especially at low tide. At first, natural frequency of the whole pump system and each part is calculated using ANSYS. As it is revealed in the previous journal papers that only circular pipe part is related to resonance, the FSI technique is applied for free vibration analysis. The natural frequency is reduced to 60% (compared to that) of the frequency measured in air as it is similar to other published results. And the frequency obtained by finite element analysis is almost same to that obtained from modal test. Based on the accurate finite element model and analysis, design change is tried to avoid the resonance by changing the thickness of pipe and base supporting plate. In stead of doing optimization process, design sensitivity is computed and used to find such designs to avoid resonance.

Nonlinear Analysis of Dynamic Response of Jacket Type Offshore Structures (Jacket형 해양구조물(海洋構造物)의 비선형(非線形) 동적응답해석(動的應答解析))

  • Y.C.,Kim;I.S.,Nho;S.W.,Park
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.23 no.2
    • /
    • pp.33-45
    • /
    • 1986
  • In the present paper, the nonlinear analysis of dynamic response of the jacket type offshore structures subject to nonlinear fluid force is performed. Furthermore, several analysis methods, such as quasi-static analysis, Newmark-$\beta$ method and state vector time integration technique, and described and compared with each others in order to investigate the efficiency numerical of the schemes for this kind of nonlinear structural analysis. In the problem formulation, various environmental forces acting on the jacket type offshore structure have been studied and calculated. Particularly, hydrodynamic forces are calculated by using the Morison type formula, which contains the interaction effect between the motion of the structure and the velocity of fluid particles. Also, Stokes' 5th order wave theory and Airy's linear wave theory are used to predict the velocity distribution of the fluid particles. Finally, the nonlinear equation of motion of the structure is obtained by using three-dimensional finite element formulation. Based on the above procedures, two examples, i.e. a single pile and a typical offshore jacket platform, are studied in details.

  • PDF

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident

  • Lee, Jae-Seok;Oh, Jai-Ho;Lee, Sang-Gab
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.11a
    • /
    • pp.241-247
    • /
    • 2018
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding and sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using a highly advanced Modeling & Simulation (M&S) system of the Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was conducted and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

  • PDF

Beyond design basis seismic evaluation of underground liquid storage tanks in existing nuclear power plants using simple method

  • Wang, Shen
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2147-2155
    • /
    • 2022
  • Nuclear safety-related underground liquid storage tanks, such as those used to store fuel for emergency diesel generators, are critical components for safety of hundreds of existing nuclear power plants (NPP) worldwide. Since most of those NPP will continue to operate for decades, a beyond design base (BDB) seismic screening of safety-related underground tanks in those NPP is beneficial and essential to public safety. The analytical methodology for buried tank subjected to seismic effect, including a BDB seismic evaluation, needs to consider both soil-structure and fluid-structure interaction effects. Comprehensive analysis of such a soil-structure-fluid system is costly and time consuming, often subjected to availability of state-of-art finite element tools. Simple, but practically and reasonably accurate techniques for seismic evaluation of underground liquid storage tanks have not been established. In this study, a mechanics based solution is proposed for the evaluation of a cylindrical underground liquid storage tank using hand calculation methods. For validation, a practical example of two underground diesel fuel tanks in an existing nuclear power plant is presented and application of the proposed method is confirmed by using published results of the computer-aided System for Analysis of Soil Structural Interaction (SASSI). The proposed approach provides an easy to use tool for BDB seismic assessment prior to making decision of applying more costly technique by owner of the nuclear facility.

Impact of the Thruster Jet Flow of Ultra-large Container Ships on the Stability of Quay Walls

  • Hwang, Taegeon;Yeom, Gyeong-Seon;Seo, Minjang;Lee, Changmin;Lee, Woo-Dong
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.6
    • /
    • pp.403-413
    • /
    • 2021
  • As the size of ships increases, the size and output power of their thrusters also increase. When a large ship berths or unberths, the jet flow produced from its thruster has an adverse effect on the stability of quay walls. In this study, we conducted a numerical analysis to examine the impact of the thruster jet flow of a 30,000 TEU container ship, which is expected to be built in the near future, on the stability of a quay wall. In the numerical simulation, we used the fluid-structure interaction analysis technique of LS-DYNA, which is calculated by the overlapping capability using an arbitrary Lagrangian Eulerian formulation and Euler-Lagrange coupling algorithm with an explicit finite element method. As the ship approached the quay wall and the vertical position of the thruster approached the mound of the quay wall, the jet flow directly affected the foot-protection blocks and armor stones. The movement and separation of the foot-protection blocks and armor stones were confirmed in the area affected directly by the thruster jet flow of the container ship. Therefore, the thruster jet flows of ultra-large ships must be considered when planning and designing ports. In addition, the stability of existing port structures must be evaluated.

Study of Blood Characteristics in Stenosed Artery under Human Body Rotation by Using FSI Method (FSI 기법을 적용한 인체 회전 시 협착 혈관에서의 혈류 특성)

  • Cho, Seong Wook;Kim, Seungwook;Ro, Kyoung Chul;Ryou, Hong Sun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.5
    • /
    • pp.449-457
    • /
    • 2013
  • In this study, we performed a numerical analysis to investigate the effect of rotation on the blood flow and arterial wall behavior by using the FSI (fluid-structure interaction) technique. The geometry of the artery included 50% stenosis at the center. To simulate the rotational effect, 2-6 rps of axial velocity was applied to the arterial model. A spiral wave and asymmetric flow occurred due to the stenosis and axial rotation both in the rigid body model and in the FSI model. However, the arterial wall motion caused periodic and transient blood flow changes in the FSI model. The FRZ (fluid recirculation zone) decreased in the FSI model, which is a known predictor for the formation and vulnerability of plaque. Therefore, it is observed that arterial wall motion also influences the generation of the FRZ.

A Study on Flooding·Sinking Simulation for Cause Analysis of No. 501 Oryong Sinking Accident (제501 오룡호 침몰사고 원인분석을 위한 침수·침몰 시뮬레이션 연구)

  • Lee, Jae-Seok;Jung, Hyun-Sub;Oh, Jai-Ho;Lee, Sang-Gab
    • Journal of Navigation and Port Research
    • /
    • v.41 no.6
    • /
    • pp.451-466
    • /
    • 2017
  • Deep-sea fishing vessel No. 501 Oryong was fully flooded through its openings and sunk to the bottom of the sea due to the very rough sea weather on the way of evasion after a fishing operation in the Bearing Sea. As a result, many crew members died and/or were missing. In this study, a full-scale ship flooding sinking simulation was conducted, and the sinking process was analyzed for the precise and scientific investigation of the sinking accident using highly advanced Modeling & Simulation (M&S) system of Fluid-Structure Interaction (FSI) analysis technique. To objectively secure the weather and sea states during the sinking accident in the Bering Sea, time-based wind and wave simulation at the region of the sinking accident was carried out and analyzed, and the weather and sea states were realized by simulating the irregular strong wave and wind spectrums. Simulation scenarios were developed and full-scale ship and fluid (air & seawater) modeling was performed for the flooding sinking simulation, by investigating the hull form, structural arrangement & weight distribution, and exterior inflow openings and interior flooding paths through its drawings, and by estimating the main tank capacities and their loading status. It was confirmed that the flooding and sinking accident was slightly different from a general capsize and sinking accident according to the simple loss of stability.

A Study on the Core Equivalent Stiffness Modeling Technique for FSI Analysis of High-Rise Buildings Under Wind Load (풍하중을 받는 초고층건물의 FSI 해석을 위한 코어 삽입 등가 강성 모델링 기법에 관한 연구)

  • Oh, Kang-Hwan;Jeon, Doo-jin;Han, Sang-Eul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.3
    • /
    • pp.65-73
    • /
    • 2017
  • Recently, the trend is emerging a variety of irregular tall buildings. It is important to design the building for lateral load according to this trend. Fluid Structure Interaction(FSI) simulation can be performed to understand the vibrations of the structure against dynamic wind loads. In order to make the physical characteristics of the actual structure and the analytical model the same, we studied core inserting equivalent stiffness modeling method. As a result of this analysis, the stiffness of the structure can be set similar to that of the two axes of the structure, and turbulence can be reproduced through the acceleration tendency.