DOI QR코드

DOI QR Code

Study of Blood Characteristics in Stenosed Artery under Human Body Rotation by Using FSI Method

FSI 기법을 적용한 인체 회전 시 협착 혈관에서의 혈류 특성

  • Received : 2012.08.14
  • Accepted : 2013.01.28
  • Published : 2013.05.01

Abstract

In this study, we performed a numerical analysis to investigate the effect of rotation on the blood flow and arterial wall behavior by using the FSI (fluid-structure interaction) technique. The geometry of the artery included 50% stenosis at the center. To simulate the rotational effect, 2-6 rps of axial velocity was applied to the arterial model. A spiral wave and asymmetric flow occurred due to the stenosis and axial rotation both in the rigid body model and in the FSI model. However, the arterial wall motion caused periodic and transient blood flow changes in the FSI model. The FRZ (fluid recirculation zone) decreased in the FSI model, which is a known predictor for the formation and vulnerability of plaque. Therefore, it is observed that arterial wall motion also influences the generation of the FRZ.

본 논문에서는 FSI(Fluid-Structure Interaction)기법을 이용하여 인체 회전의 영향을 고려한 혈류와 혈관벽의 거동을 이해하기 위한 수치해석을 수행하였다. 혈관은 협착률이 50%이고 편심이 없는 형상이며 인체 회전 효과를 묘사하기 위하여 혈관 주축에 대해 2 ~ 6 rps 의 회전을 가하였다. 협착과 축 회전의 영향으로 나선형, 비대칭 유동이 강체와 FSI 모델에서 모두 나타났다. 그러나 FSI 모델에서 혈관벽 움직임의 영향으로 혈류의 주기적, 과도적 차이가 발생했다. 특히 혈관 내 경화반의 진전과 경화반 위험성을 나타내는 대표적인 인자로 알려진 유동 재순환 영역이 감소하였다. 혈관벽의 움직임은 협착과 회전효과와 마찬가지로 유동 재순환 영역의 생성에 영향을 미친다.

Keywords

References

  1. Goldenberg, A. A. and Bezerghi, A., 1985, "A Preview Approach to Force Control of Robot Manipulators," Mechanism and Machine Theory, Vol. 20, No. 5, pp. 449-464. https://doi.org/10.1016/0094-114X(85)90049-7
  2. White, F. M., 1974, Viscous Fluid Flow, McGraw- Hill, New York, pp. 163-189.
  3. Suh, S. H., Choi, Y., Roh, H. W. and Doh, H., 1999, "Flow Analysis in the Bifurcated Duct with PIV System and Computer Simulation," Trans. Korean Soc. Mech. Eng. B, Vol. 23, No. 1, pp. 123-180.
  4. Hiatt, E. P., Mecchan, J. P. and Galambos, 1969 "Reports on Human Acceleration," National Academy of Sciences-National Research Council, Washington D. C, Publication 901.
  5. Zeng, D., Ding, Z., Friedman, M. H. and Ethier, C. R., 2003, "Effects of Cardiac Motion on Right Coronary Artery Hemodynamics," Annals of Biomedical Engineering, Vol. 31 No. 4, pp. 420-429. https://doi.org/10.1114/1.1560631
  6. Ramaswamy, S. D., Vigmostad, S. C., Wahle, A., Lai, Y. G., Olszewski, M. E., Braddy, K. C., Brennan, T. M. H., Rossen, J. D., Sonka, M. and Chandran, K. B. , 2004, "Fluid Dynamic Analysis in a Human Left Anterior Descending Coronary Artery with Arterial Motion," Annals of Biomedical Engineering, Vol. 32, No. 12, pp. 1628-1641. https://doi.org/10.1007/s10439-004-7816-3
  7. Sud, V. K. and Sekhon, G. S., 1985, "Arterial Flow under Periodic Body Acceleration," Bulletin of Mathematical Biology, Vol. 47, No. 1, pp. 35-52. https://doi.org/10.1007/BF02459645
  8. Sud, V. K. and Sekhon, G. S., 1986, "Analysis of Blood Flow through a Model of the Human Arterial System under Periodic Body Acceleration," Journal of Biomechanics, Vol. 19, No. 11, pp. 929-941. https://doi.org/10.1016/0021-9290(86)90188-0
  9. Misra, J. C. and Sahu, B. K., 1988, "Flow Through Blood Vessels under the Action of a Periodic Acceleration Field. A Mathematical Analysis," Computers & Mathematics with Applications, Vol. 16, No. 12, pp. 857-867.
  10. Mandal, P. K., Chakravarty, S., Mandal, A. and Amin, N., 2007, "Effect of Body Acceleration on Unsteady Pulsatile Flow of Non-Newtonian Fluid Through a Stenosed Artery," Applied Mathematics and Computation, Vol. 189, No, 1. pp. 766-779. https://doi.org/10.1016/j.amc.2006.11.139
  11. Ro, K. C., Lee, S. H., Cho, S. W. and Ryou, H. S., 2008, "Numerical Study on Blood Flow Characteristics of the Stenosed Blood Vessel with Periodic Acceleration and Rotating Effect," Springer Proceedings in Physics Series Vo. 124, pp. 77-83. https://doi.org/10.1007/978-3-540-85190-5_7
  12. Imao, S. Itoh, M., Yamada, Y. and Zhang, Q., 1992, "The Characteristics of Spiral Waves in an Axially Rotating Pipe," Experiments in Fluids, Vol. 12, No. 4- 5, pp. 277-285.
  13. Kikuyama, K., Murakami, M., Nishibori, K. and Maeda, K., 1983, Flow in an Axially Rotating Pipe: A Calculation of Flow in the Saturated Region, Bulletin of the JSME, Vol. 26, No, 214, pp. 506-513. https://doi.org/10.1299/jsme1958.26.506
  14. Chien, S., 1982, "Hemorheology in Clinical Medicine," Clinical Hemorheology, Vol. 2, pp. 137-142.
  15. Sung, K. H., Ro, K. C. and Ryou, H. S., 2009, "Numerical Investigation on the Blood Flow Characteristics Considering the Axial Rotation in Stenosed Artery," Korea-Australia Rheology Journal, Vol. 21, no. 2, pp. 119-126.
  16. Bella J. N., Roman, M. J., Pini, R., Schwartz, J. E., Pickering, T. G. and Devereux, R. B., 1999, "Assessment of Arterial Compliance by Carotid Midwall Strain-Stress Relation in Normotensive Adults," Hypertension, Vol. 33, pp. 787-792. https://doi.org/10.1161/01.HYP.33.3.787
  17. Hsu, M. C. and Bazilevs, Y., 2011, "Blood Vessel Tissue Prestress Modeling for Vascular Fluid-Structure Interaction Simulation," Finite Element in Analysis and Design, Vol. 47, No. 6, pp. 593-599. https://doi.org/10.1016/j.finel.2010.12.015
  18. Torii, R., Oshima, M., Kobayashi, T., Takagi, K. and Tezduyar, T. E., 2011, "Influencing Factors in Imagebased Fluid-Structure Interaction Computation of Cerebral Aneurysms," International Journal for Numerical Methods in Fluids, Vol. 65, No. 1-3, pp. 324-340. https://doi.org/10.1002/fld.2448
  19. Caro, C. G., Pedley, T. J., Schroter, R. C., Seed, W. A., 2011, "The Mechanics of the Circulation," Cambridge University Press, London, p.550.
  20. Perktold. K. and Rappitsch, G., 1995, "Computer Simulation of Local Blood Flow and Vessel Mechanics In a Compliant Carotid Artery Bifurcation Model," Journal of Biomechanics, Vol. 28, no. 7, pp. 845-856. https://doi.org/10.1016/0021-9290(95)95273-8
  21. Zhao, S. Z., Ariff, B., Long, Q., Heghes, A. D., Thom, S. A., Stanton, A. V. and Xu, X. Y., 2002, Inter- Individual Variations in Wall Shear Stress and Mechanical Stress Distributions at the Carotid Artery Bifurcation of Healthy Humans," Journal of Biomechanics, Vol. 35, No. 10, pp. 1367-1377. https://doi.org/10.1016/S0021-9290(02)00185-9
  22. Tada S. and Tarbell, J. M., 2005, "A Computational Study of Flow in a Compliant Carotid Bifurcation- Stress Phase Angle Correlation with Shear Stress," Annals of Biomedical Engineering, Vol. 33, No. 9, pp. 1202-1212. https://doi.org/10.1007/s10439-005-5630-1
  23. Tang, D., Yang, C., Zheng, J., Woodard, P. K., Sicard, G. A., Saffitz, J. E. and Yuan, C., 2004, "3D MRI-Based Multicomponent FSI Models for Atherosclerotic Plaques," Annals of Biomedical Engineering, Vol. 32, no. 7, pp. 947-960. https://doi.org/10.1023/B:ABME.0000032457.10191.e0
  24. Gao, H. and Long, Q., 2008, "Effects of Varied Lipid Core Volume and Fibrous Cap Thickness on Stress Distribution in Carotid Arterial Plaques," Journal of Biomechanics, Vol. 41, No. 14, pp. 3053-3059. https://doi.org/10.1016/j.jbiomech.2008.07.011
  25. Salzer R. S., Thubrikar, M. J. and Eppink, R. T. ,1995, "Pressure Induced Mechanical Stress in the Carotid Artery Bifurcation: A Possible Correlation to Atherosclerosis," Journal of Biomechanics, Vol. 28, No.11, pp. 1333-1340. https://doi.org/10.1016/0021-9290(95)00005-3
  26. Cho, Y. I., Back, L. H. and Crawford, D. W., 1985, "Experimental Investigation of Branch Flow Ratio, Angle, and Reynolds Number Effects on the Pressure and Flow Fields in Arterial Branch Models," Journal of Biomechanical Engineering-Transactions of the ASME, Vol. 107, No. 3, pp. 257-267. https://doi.org/10.1115/1.3138551
  27. Bathe, K. J. and Zhang, H., 2004, "Finite Element Developments for General Fluid Flows with Structural Interactions," International Journal for Numerical Methods in Engineering, Vol. 60, No.1, pp. 213-232. https://doi.org/10.1002/nme.959
  28. Gijsen, F. J. H, Allanic, E., van de Vosse, F. N. and Janssen, J. D., 1999, "The Influence of The Non- Newtonian Properties of Blood on the Flow in Large Arteries: Unsteady Flow in a $90^{\circ}$ Curved Tube," Journal of Biomechanics, Vol. 32, No. 6, pp. 601-608. https://doi.org/10.1016/S0021-9290(99)00015-9
  29. Luo, J. Y., Issa, R. I. and Gosman, A. D., 1994, "Prediction of Impeller Induced Flows in Mixing Vessels using Multiple Frames of Reference," IChemE Symposium Series, Vol. 136, pp. 549-556.
  30. Olgac, U., Poulikakos, D., Saur, S. C., Alkadhi, H. and Kurtcuoglu, V., 2009, "Patient-Specific Three- Dimensional Simulation of LDL Accumulation in a Humna Left Coronary Artery in It's Healthy and Atherosclerotic States," American Journal of Physiology-Heart and Circulatory Physiology, Vol. 296, No. 6, pp. 1969-1982. https://doi.org/10.1152/ajpheart.01182.2008
  31. Knight, J., Olgac, U., Saur, S. C., Poulikakos, D., Marshall, W Jr., Cattin, P. C., Alkadhi, H. and Kurtcuoglu, V., 2010, "Choosing the Optimal Wall Shear Parameter for the Prediction of Plaque Location- A Patient-Specific Computational Study in Human Right Coronary Arteries," Atherosclerosis, Vol. 211, No. 2, pp. 445-450. https://doi.org/10.1016/j.atherosclerosis.2010.03.001
  32. Leach, J. R., Rayz, V. L., Morfad, M. R. K. and Saloner, D., 2010, "An Efficient Two-Stage Approach for Image-Based FSI Analysis of Atherosclerotic Arteries," Biomechanics and Modeling in Mechanbiology, Vol. 9, No. 2, pp. 213-223. https://doi.org/10.1007/s10237-009-0172-3