• Title/Summary/Keyword: Fluid-Solid Interaction

Search Result 117, Processing Time 0.034 seconds

Development of interface elements for the analysis of fluid-solid problems (유체-고체 상호작용 해석을 위한 계면요소의 개발)

  • Kim, Hyun-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.442-447
    • /
    • 2008
  • This paper presents a new approach to simulate fluid-solid interaction problems involving non-matching interfaces. The coupling between fluid and solid domains with dissimilar finite element meshes consisting of 4-node quadrilateral elements is achieved by using the interface element method (IEM). Conditions of compatibility between fluid and solid meshes are satisfied exactly by introducing the interface elements defined on interfacing regions. Importantly, a consistent transfer of loads through matching interface element meshes guarantees the present method to be an efficient approach of the solution strategy to fluid-solid interaction problems. An arbitrary Lagrangian-Eulerian (ALE) description is adopted for the fluid domain, while for the solid domain an updated Lagrangian formulation is considered to accommodate finite deformations of an elastic structure. The stabilized equal order velocity-pressure elements for incompressible flows are used in the motion of fluids. Fully coupled equations are solved simultaneously in a single computational domain. Numerical results are presented for fluid-solid interaction problems involving nonmatching interfaces to demonstrate the effectiveness of the methodology.

  • PDF

A HEAVISIDE-FUNCTION APPROACH FOR THE INTERACTION OF TWO-PHASE FLUID AND NON-DEFORMABLE SOLID

  • Kang, Myung-Joo;Min, Cho-Hong
    • The Pure and Applied Mathematics
    • /
    • v.19 no.2
    • /
    • pp.147-169
    • /
    • 2012
  • We introduce a Heaviside-function formulation of the interaction between incompressible two-phase fluid and a non-deformable solid. Fluid and solid interact in two ways : fluid satises the Dirichlet boundary condition imposed by the velocity field of solid, and solid is accelerated by the surface traction exerted by fluid. The two-way couplings are formulated by the Heaviside function to the interface between solid and fluid. The cumbersome treatment of interface is taken care of by the Heaviside function, and the interaction is discretized in a simple manner. The discretization results in a stable and accurate projection method.

A Study on Dehumidification Characteristics of Hollow Fiber Membrane Module for Pneumatic Power Unit Using Fluid-Solid Interaction Analysis (유동-구조 연성해석을 이용한 공압용 파워 유닛에 사용되는 중공사막 모듈에 대한 제습특성 연구)

  • Jeong, Eun-A;Khan, Haroon Ahmad;Lee, Kee-Yoon;Yun, So-Nam
    • Journal of Drive and Control
    • /
    • v.16 no.4
    • /
    • pp.65-73
    • /
    • 2019
  • In this study, flow analysis and fluid-solid interaction analysis were conducted on a hollow fiber membrane module used for analysis of dehumidification characteristics. To ensure the reliability of the flow analysis results, the dehumidification experiment was performed under the temperature of 30℃ and relative humidity of 30% RH. The results of the dehumidification experiments were compared with the flow analysis results. The results of dehumidification experiments and flow analysis had a difference of approximately 5%. A 1-Way fluid-solid interaction analysis with various materials was conducted. From the results, it was found that the baffle with the largest shape deformation (polyethylene material) was subjected to 2-way fluid-solid interaction. The analysis of fluid flow and dehumidification characteristics were analyzed according to the shape deformation of the baffle.

Finite element analysis of elastic solid/Stokes flow interaction problem

  • Myung, Jin-Suk;Hwang, Wook-Ryol;Won, Ho-Youn;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.19 no.4
    • /
    • pp.233-242
    • /
    • 2007
  • We performed a numerical investigation to find out the optimal choice of the spatial discretization in the distributed-Lagrangian-multiplier/fictitious-domain (DLM/FD) method for the solid/fluid interaction problem. The elastic solid bar attached on the bottom in a pressure-driven channel flow of a Newtonian fluid was selected as a model problem. Our formulation is based on the scheme of Yu (2005) for the interaction between flexible bodies and fluid. A fixed regular rectangular discretization was applied for the description of solid and fluid domain by using the fictitious domain concept. The hydrodynamic interaction between solid and fluid was treated implicitly by the distributed Lagrangian multiplier method. Considering a simplified problem of the Stokes flow and the linearized elasticity, two numerical factors were investigated to clarify their effects and to find the optimum condition: the distribution of Lagrangian multipliers and the solid/fluid interfacial condition. The robustness of this method was verified through the mesh convergence and a pseudo-time step test. We found that the fluid stress in a fictitious solid domain can be neglected and that the Lagrangian multipliers are better to be applied on the entire solid domain. These results will be used to extend our study to systems of elastic particle in the Stokes flow, and of particles in the viscoelastic fluid.

ALE-Based FSI Simulation of Solid Propellant Rocket Interior (ALE 기반의 고체 로켓 내부 유체-구조 연계 해석)

  • Han, Sang-Ho;Choi, H.S.;Min, D.H.;Kim, C.;Hwang, Chan-Gyu
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.510-513
    • /
    • 2008
  • The traditional computational fluid or structure dynamics analysis approaches have contributed to solve many delicate engineering problems. But for the most of recent engineering problems which are influenced by fluid-structure interaction effect strongly, traditional individual approaches have limited analysis abilities for the exact simulation. Owing to above-mentioned reason, nowadays fluid-structure interaction analysis has become a matter of concern and interest. FSI analysis require several unprecedented techniques for the combining individual analysis tool into integrated analysis tool. The Arbitrary Lagrangian-Eulerian(ALE, in short) method is the new description of continum motion,which combines the advantages of the classical kinematical descriptions, i.e. Lagrangian and Eulerian description, while minimizing their respective drawbacks. In this paper, the ALE description is adapted to simulate fluid-structure interaction problems. An automatic re-mesh algorithm and a fluid-structure coupling process are included to analyze the interaction and moving motion during the 2-D axisymmetric solid rocket interior FSI phenomena simulation.

  • PDF

Prediction of the performance of a reciprocating compressor taking fluid-solid interaction into account (고체-유체의 상호작용을 고려한 왕복동 압축기의 성능예측)

  • Koh, J.C.;Joo, J.M.;Pak, C.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.9 no.1
    • /
    • pp.33-42
    • /
    • 1997
  • The reciprocating compressors are widely used in industrial fields for its simplicity in principle and high efficiency. But the design of it requires rigorous experiments due to its high dependence on many design parameters. In this work, a mathematical model is developed so that we can analyze the gas-solid interaction during the whole working processes of a reciprocating compressor. The governing equations, which represent the fluid-solid interaction, was derived from the unsteady Bernoulli's equation with the assumption of quasi-steady working process. The valve itself was assumed to be a one degree of freedom spring-mass-damper system. A simple thermodynamic relation, the ideal gas state equation, was used to give it an external force term assuming that the refrigerant behaves like an ideal gas. It was suggested to use a motor of higher driving frequency to enhance the performance of the reciprocating compressor without causing a faster failure of the valve.

  • PDF

Investigation of a fiber reinforced polymer composite tube by two way coupling fluid-structure interaction

  • Daricik, Fatih;Canbolat, Gokhan;Koru, Murat
    • Coupled systems mechanics
    • /
    • v.11 no.4
    • /
    • pp.315-333
    • /
    • 2022
  • Fluid-Structure Interaction (FSI) modeling is highly effective to reveal deformations, fatigue failures, and stresses on a solid domain caused by the fluid flow. Mechanical properties of the solid structures and the thermophysical properties of fluids can change under different operating conditions. In this study, we investigated the interaction of [45/-45]2 wounded composite tubes with the fluid flows suddenly pressurized to 5 Bar, 10 Bar, and 15 Bar at the ambient temperatures of 24℃, 66℃, and 82℃, respectively. Numerical analyzes were performed under each temperature and pressure condition and the results were compared depending on the time in a period and along the length of the tube. The main purpose of this study is to present the effects of the variations in fluid characteristics by temperature and pressure on the structural response. The variation of the thermophysical properties of the fluid directly affects the deformation and stress in the material due to the Wall Shear Stress (WSS) generated by the fluid flow. The increase or decrease in WSS directly affected the deformations. Results show that the increase in deformation is more than 50% between 5 Bar and 10 Bar for the same operating condition and it is more than 100% between 5 Bar and 15 Bar by the increase in pressure, as expected in terms of the solid mechanics. In the case of the increase in the temperature of fluid and ambient, the WSS and Von Mises stress decrease while the slight increases of deformations take place on the tube. On the other hand, two-way FSI modeling is needed to observe the effects of hydraulic shock and developing flow on the structural response of composite tubes.

CBT Combustion Precise Modeling and Analysis Using VOF and FSI Methods (VOF와 FSI 방법을 적용한 CBT 연소 정밀 모델링 및 해석)

  • Jeongseok Kang;Jonggeun Park;Hong-Gye Sung
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.5
    • /
    • pp.35-43
    • /
    • 2022
  • Precise modeling and analysis of closed bomb test(CBT) combustion using solid propellants was performed. The fluid structure interaction(FSI) method was implemented to analyze the gas and solid phases at the same time. The Eulerian analysis method was applied for the gas phase and grain combustion, and the Lagrangian analysis method was implemented for the grain movement. The interaction between the solid phase grains and the combustion gas was fully coupled through the source term. The volume of fluid(VOF) method was used to simulate the burning distance of the grain and the movement of the combustion surface. The force acting on the grain was comprised of the pressure and gravity acting on the grain burning surface, and the grain burning rate and grain movement speed were considered in the velocity term of the VOF. The combustion analysis was performed for both one and three grains, and fairly compared with the experiments. The acoustic field during grain combustion due to pressure fluctuations was also analyzed.

Numerical simulation on fluid-structure interaction of wind around super-tall building at high reynolds number conditions

  • Huang, Shenghong;Li, Rong;Li, Q.S.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.2
    • /
    • pp.197-212
    • /
    • 2013
  • With more and more high-rise building being constructed in recent decades, bluff body flow with high Reynolds number and large scale dimensions has become an important topic in theoretical researches and engineering applications. In view of mechanics, the key problems in such flow are high Reynolds number turbulence and fluid-solid interaction. Aiming at such problems, a parallel fluid-structure interaction method based on socket parallel architecture was established and combined with the methods and models of large eddy simulation developed by authors recently. The new method is validated by the full two-way FSI simulations of 1:375 CAARC building model with Re = 70000 and a full scale Taipei101 high-rise building with Re = 1e8, The results obtained show that the proposed method and models is potential to perform high-Reynolds number LES and high-efficiency two-way coupling between detailed fluid dynamics computing and solid structure dynamics computing so that the detailed wind induced responses for high-rise buildings can be resolved practically.