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A HEAVISIDE-FUNCTION APPROACH FOR THE INTERACTION
OF TWO-PHASE FLUID AND NON-DEFORMABLE SOLID

Myungjoo Kang a and Chohong Min b, ∗

Abstract. We introduce a Heaviside-function formulation of the interaction be-
tween incompressible two-phase �uid and a non-deformable solid. Fluid and solid
interact in two ways : �uid satis�es the Dirichlet boundary condition imposed by
the velocity �eld of solid, and solid is accelerated by the surface traction exerted by
�uid. The two-way couplings are formulated by the Heaviside function to the inter-
face between solid and �uid. The cumbersome treatment of interface is taken care
of by the Heaviside function, and the interaction is discretized in a simple manner.
The discretization results in a stable and accurate projection method.

1. Introduction
In this paper, we introduce a Heaviside-function formulation of incompressible

two-phase �uid interacting with a non-deformable solid. For the two-phase �uid, we
take the level-set approach by Sussman et al [20, 21]. The interface between two
phases, which we call air and water, is tracked by the level-set method [15]. The
level-set function, which we denote by φair, splits the regions of air and water by its
sign: it is taken positive in the region of water and negative in that of air.

(1)





Ut + (U · ∇) U + 1
ρ∇p = g + 1

ρ∇ · (2µD)
φair

t + (U · ∇) φair = 0
∇ · U = 0

Here U is the �uid velocity �eld, ρ is the �uid density, µ is the �uid viscosity,
D (U) = 1

2

(
∇U + (∇U)T

)
is the strain-rate tensor, and g is the gravity acceleration.

We do not include the surface-tension force acting on the interface between water
and air. The magnitude of surface tension is linearly proportional to the mean
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curvature ∇ ·
(

∇φair

‖∇φair‖
)
. The second order derivatives in the curvature calculation

requires the level function to keep its smoothness during the simulation. Due to
the lack of di�usion in the hyperbolic equation for φair, it is not simple to achieve
the regularity requirement. It was pointed out in [5] that curvature calculation may
become unreliable very soon, unless a high order method is used in approximating the
hyperbolic equation. The temporal and spatial derivatives of the �uid equations will
be discretized with some usual second order methods whose second order accuracy is
not su�cient for the curvature calculation. Our main interest is not on the interfacial
phenomenon between air and water, but on the interfacial phenomenon between �uid
and water. From these reasons, we omit the surface tension term in �uid equations,
and seek its inclusion in future work.

Within a narrow transition region around the interface, the two materials are
assumed to be mixed, so that the density and viscosity are set to smoothly change
across the interface by the following formula. In the below, α denotes the thickness
of the transition region. In our computations, we set α = 2∆x.

ρ
(
φair

)
= ρair +

(
ρwater − ρair

)
Hα

(
φair

)

µ
(
φair

)
= µair +

(
µwater − µair

)
Hα

(
φair

)

Hα
(
φair

)
=





1 if φair > α

0 if φair < −α
1
2

(
φair

α + 1
π sin

(
πφair

α

))
else

Non-deformable solid, or often called as rigid body, is represented by four state
vectors : center of mass C (t) ∈ R3, linear momentum P (t) ∈ R3, angular momentum
L (t) ∈ R3, and orientation matrix R (t) ∈ R3×3. The state vectors are advanced in
time by the Euler's equations [9, 7].

(2)





C ′ = 1
mP

P ′ = mg + f
L′ = τ
R′ = ω×R

,

where f is the given force, τ is the given torque, ω = Inertia−1L is the angu-
lar velocity, Inertia =

∫
ρ

(
xT x− xxT

)
is the inertia matrix, and ω× is the skew-

symmetric matrix corresponding to the cross product ω × x = ω×x for all x . Fluid
and solid interact in two ways: �uid satis�es the Dirichlet boundary condition im-
posed by the velocity �eld of solid, and solid is accelerated by the surface traction
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exerted by �uid.

(3)





U = U solid on Γ
f =

∫
Γ (−p + 2µD) N

τ =
∫
Γ (x− C)× ((−p + 2µD) N)

,

where Γ is the interface between �uid and solid, U solid (x, t) = P (t)
m + ω (t) ×

(x− C (t)) is the velocity �eld of solid, and N is the unit normal vector pointing
outward to �uid.

Many e�cient �nite di�erence methods have been developed for �uid simulations.
Chorin's projection method [4] introduced a way to decouple the pressure term from
the equation of momentum conservation, so that the saddle-point system can be
avoided. The projection method is �rst order accurate, and gets improved by many:
Bell and Colella [2], Kim and Moin [8], and E and Liu [6]. Finite di�erence methods
are by nature suited for rectangular domains. It is rather recent to see the develop-
ment of �nite di�erence methods for irregular domains. Purvis and Burkhalter [16]
introduced an e�cient projection method for �uid in irregular domains, and their
work was followed by Min and Gibou [14]. In [1], Batty et al formulated the interac-
tion between �uid and non-deformable solid as a Kinetic-energy minimization, and
discretized the interaction by the Euler-Lagrange equation of the minimization. In
[17], Robinson-Mosher et al discretized the interaction by conserving the momentum
transfer between �uid and solid, so that the stability of simulation is enhanced.

In this paper, we formulate the interaction by a Heaviside function H (x, t) taking
value one in �uid region and zero in solid region. Note that ∇H = δN , where δ is
the Dirac delta function with support on the interface Γ, and N is the unit normal
vector �eld on Γ. The Dirichlet boundary condition and the forcing terms are then
formulated as

(4)





U · ∇H = U solid · ∇H
f =

∫
Rd (−p + 2µD)∇H

τ =
∫
Rd (x− C)× ((−p + 2µD)∇H)

.

The use of Heaviside function absorbs the information of irregular domain and en-
ables us to discretize the interaction in a simple manner. More importantly, the
discretization satis�es a stability condition stated in theorem 3.1.

2. Temporal Discretization

We take the projection approach : the �uid equations (1) and the solid equations
(2) are advanced without the pressure terms, and then the advanced variables are
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projected to satisfy the incompressible condition and the interaction equations (4).
Because of the di�usion term, an explicit discretization of �uid momentum equation
severly restrict the time step as ∆t = O

(
∆x2

)
. Thus, we implicitly discretize the

�uid momentum equation and explicitly discretize the other equations that are free
of di�usion.

The state of �uid is represented by velocity �eld U (x, t) and level function
φair (x, t), and the state of solid is represented by C (t), P (t), L (t), and R (t).
A level function φ (x, t) describes the interface between �uid and solid, so that
Ωfluid = {x|φ (x) > 0} and Ωsolid = {x|φ (x) < 0}, and the heaviside function is
then derived as H (x, t) = H (φ (x, t)), where H (·) is the one dimensional heavside
function.
2.1. Advancing solid variables without pressure. The solid variables are ad-
vanced with the second order Adams-Bashford method.





3
2
Cn+1−2Cn+ 1

2
Cn−1

∆t = 2Pn − Pn−1

3
2
P ∗−2P n+ 1

2
P n−1

∆t = 2f∗,n − f∗,n−1 + mg
3
2
L∗−2Ln+ 1

2
Ln−1

∆t = 2τ∗,n − τ∗,n−1

3
2
Rn+1−2Rn+ 1

2
Rn−1

∆t = 2 (ωn)×Rn − (
ωn−1

)×
Rn−1

Here f∗ =
∫
Rd (2µD)∇H and τ∗ =

∫
Rd (x− C) × (2µD)∇H. Note that f∗

and τ∗ miss the pressure terms in their integrations. P ∗and L∗ require a further
update with the pressure term, while the update of Cn+1 and Rn+1 is complete. The
level function φn+1 representing the interface between �uid and solid is updated as
φn+1 (x) = φ0

((
Rn+1

)−1 (
x− Cn+1

)
+ C0

)
, for each x.

2.2. Advancing �uid variables without pressure. Writing the �uid momentum
equation in Lagrangian coordinates, we have

DU

Dt
=

1
ρ
∇ · (−p + 2µD (U)) + g.

We omit the pressure term and discretize the time derivative with the second
order backward-di�erence-formula to have

3
2U∗ − 2Un

d + 1
2Un−1

d

∆t
=

1
ρn+1

∇ · (µn+1D (U∗)
)

+ g in Ωfluid,n+1

U∗ = U solid,n+1 +
3
2
∆t · ∇pn

ρn+1
onΓn+1
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2.3. Projection. Given a velocity �eld U∗ of �uid and momentum vectors P ∗and
L∗ of solid, the incompressible condition and the interaction identities (4) can be
enforced by the following projection method. From the �uid equations (1) and the
solid equations (2), we make the following ansatz with pressure variable p.

Un+1 = U∗ − 2∆t

3
∇pn+1

ρn+1
in Ωfluid,n+1

Pn+1 = P ∗ − 2∆t

3

∫

Rd

pn+1∇Hn+1

Ln+1 = L∗ − 2∆t

3

∫

Rd

pn+1
(
x− Cn+1

)×∇Hn+1

For simplicity, let qn+1 = 2∆t
3 pn+1, then

Un+1Hn+1 = U∗Hn+1 − Hn+1

ρn+1
∇qn+1

Pn+1 = P ∗ −
∫

Rd

qn+1∇Hn+1dV (x)

Ln+1 = L∗ −
∫

Rd

qn+1
(
x− Cn+1

)×∇Hn+1dV (x)

From the �uid incompressible condition H (∇ · U) = 0 and the interaction identity
U · ∇H = U solid · ∇H,

−∇ ·
(

Hn+1

ρn+1
∇qn+1

)
= −∇ · (Hn+1U∗) +∇ · (Hn+1Un+1

)

= −∇ · (Hn+1U∗) +
(∇Hn+1

) · U solid,n+1

Here U solid = 1
mP + (Inertia)−1 L × (x− C). There are pressure terms on the

right-hand-side, since
(∇Hn+1

) · U solid,n+1

=
(∇Hn+1

) · U solid,∗ − (∇Hn+1
) ·




∫

Rd

qn+1 1
m
∇Hn+1dV (x)




− (∇Hn+1
) ·


(

Inertian+1
)−1




∫

Rd

qn+1
(
x− Cn+1

)×∇Hn+1dV (x)







× (
x− Cn+1

)
.
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Collecting all the pressure terms on the left-hand-side, we obtain the following linear
system.

−∇ ·
(

Hn+1

ρn+1
∇qn+1

)
+∇Hn+1 ·




∫

Rd

qn+1 (x)
1
m
∇Hn+1 (x) dx




(
Inertian+1

)−1 ((
x− Cn+1

)×∇Hn+1
) ·

(∫

Rd

qn+1(x)
((

x− Cn+1
)

(5)

×∇Hn+1(x)
)
dx

)
= −∇ ·

(
Hn+1

(
U∗ − U solid,∗

))

Theorem 2.1. The linear system of equation (5) is symmetric positive de�nite.

Proof. Let L (q) denote the left-hand-side operation of q. For notational conve-
niences, we omit the super-script n + 1. For the symmetry of the operator L, we
show that

∫
Rd L (q1) q2 =

∫
Rd L (q2) q1 for any L2 integrible functions q1and q2.

∫

Rd

L (q1) q2 = −
∫

Rd

(
∇ ·

(
H

ρ
∇q1

))
q2 +

∫

Rd

∇H ·



∫

Rd

q1
1
m
∇H


 q2

+
∫

Rd

(Inertia)−1 ((x− C)×∇H) ·



∫

Rd

q1 ((x− C)×∇H)


 q2

=
∫

Rd

H

ρ
∇q1 · ∇q2 +

1
m




∫

Rd

q2∇H


 ·




∫

Rd

q1∇H




+


(Inertia)−1




∫

Rd

q2 ((x− C)×∇H)




·




∫

Rd

q1 ((x− C)×∇H)




Note that we arrived a symmetric form for q1 and q2. For positive-de�niteness,
∫

Rd

L (q) q =
∫

Rd

H

ρ
‖∇q‖2+

1
m

∥∥∥∥∥∥

∫

Rd

q∇H

∥∥∥∥∥∥

2

+


(Inertia)−1




∫

Rd

q ((x− C)×∇H)






·



∫

Rd

q ((x− C)×∇H)


 ≥ 0

¤
After the solution qn+1 is obtained, the variables are updated as
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Un+1 = U∗ − ∇qn+1

ρn+1
if Hn+1 6= 0

Pn+1 = P ∗ −
∫

Rd

qn+1∇Hn+1dV (x)

Ln+1 = L∗ −
∫

Rd

qn+1
(
x− Cn+1

)×∇Hn+1dV (x) .

2.4. Extrapolation. The �uid variables Un+1 and pn+1 are valid when Hn+1 6= 0,
or in the �uid region. Since the �uid regions are changing with time, We extrpolate
them to the whole region, or at least a small band across the interface.

3. Spatial Discretization

We take the Marker and Cell (MAC) grid: pressure p is sampled on grid centers,
velocity �eld U on grid facets. The level function φ is sampled on grid centers. Let
Dx denote the central �nite di�erences in the x direction such that

(Dxp)i+ 1
2
,j =

pi+1,j − pi,j

∆x

(Dxu)ij =
ui+ 1

2
,j − ui− 1

2
,j

∆x
.

Similarly Dy denotes the central �nite di�erence in the y direction. The gradient
and divergence operators are approximated by the central �nite di�erences, and
denoted by G and Div, respectively.

G [pij ] =
([

(Dxp)i+ 1
2
,j

]
,
[
(Dyp)i+ 1

2
,j

])

Div
([

ui+ 1
2
,j

]
,
[
vi+ 1

2
,j

])
=

[
(Dxu + Dyv)ij

]

The spatial variables are discretized in a dimension-by-dimension approach, or
can be extended to three dimensions in a straight-forward manner, so that we state
only the two dimensional cases.
3.1. Strain-rate and di�usion terms. The strain-rate tensor

D (U) =
1
2

(
∇U + (∇U)T

)

is discretized by the central �nite di�erences. The elements of the matrix are sampled
either at grid nodes or at grid cell centers.




D11
i,j = (Dxu)ij

D22
ij = (Dyv)ij

D12
i+ 1

2
,j+ 1

2

= D21
i+ 1

2
,j+ 1

2

= 1
2 (Dyu + Dxv)i+ 1

2
,j+ 1

2
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The di�usion term ∇ · (2µD) is also discretized by the central �nite di�erences,
and sampled at grid facets.

{
(Dx (2µD)) i+ 1

2
,j =

(
Dx

(
2µD11

)
+ Dy

(
2µD12

))
i+ 1

2
,j

(Dx (2µD))i,j+ 1
2

=
(
Dx

(
2µD12

)
+ Dy

(
2µD22

))
i,j+ 1

2

3.2. Quadratic interpolation. We employ the stabilized quadratic interpolation
on uniform grid [12]. Given function values at the corners of [0, 1]2, the bilinear
interpolation has the formula

f bi (x, y) = (f00 (1− x) + f10x) (1− y) + (f01 (1− x) + f11x) y.

The bilinear interpolation preserves the maximum of the values, but is only second
order accurate. Correcting its second order error terms with the minmod �nite
di�erences, we obtain the stabilized quadratic interpolation.

f quad (x, y) = f bi (x, y)− 1
2
x (1− x)

(
minmod

(
D2

xf00, D
2
xf10

)
(1− y)

+minmod
(
D2

xf01, D
2
xf11

)
y
)− 1

2
y (1− y)

(
minmod

(
D2

yf00, D
2
yf01

)

· (1− x) + minmod
(
D2

yf10, D
2
yf11

)
x
)

Here the minmod operation takes the value of the argument with the smaller
absolute magnitude. Though de�ned piecewisely on each grid cell, the interpolation
is globally continuous.
3.3. Heaviside function. The Heaviside function H is discretized as H = ∇φ+·∇φ

∇φ·∇φ

by Towers [22].

Hi+ 1
2
,j =





(
Dxφ·Dxφ++Dyφ·Dyφ+

(Dxφ)2+(Dyφ)2

)
i+ 1

2
,j

if
∥∥∥(Dxφ)2 + (Dyφ)2

∥∥∥
i+ 1

2
,j

> 0

1 if
∥∥∥(Dxφ)2 + (Dyφ)2

∥∥∥
i+ 1

2
,j

= 0, φi+ 1
2
,j > 0

0 if
∥∥∥(Dxφ)2 + (Dyφ)2

∥∥∥
i+ 1

2
,j

= 0, φi+ 1
2
,j ≤ 0

Here φ+ takes the value of φ if φ ≥ 0 and zero otherwise. Similarly Hi,j+ 1
2
is

discretized.
The Heaviside discretization is very simple and second order accurate with smooth

interfaces. With the presence of kink points near the interface, we note that it may
not work properly and prefer a stabler discretization of [13]. φ is sampled on grid
nodes, but the above discretization needs its values on grid cell centers. The values
at the centers are calculated by the above quadratic interpolation algorithm.
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3.4. Integration. The calculation of the surface traction terms requires integration
on the interface Γ. Using the face that ∇H = δN , the integrations are approximated
by the following summation formula.

∫

Γ

pN =
∑

i,j

(
p

[
DxH
DyH

])

ij

∆x∆y

∫

Γ

2µDN =
∑

i,j

(
2µ

[
D11 0
0 D22

] [
DxH
DyH

])

ij

∆x∆y

+
∑

i,j

(
2µ

[
0 D12

D21 0

] [
DxH
DyH

])

i+ 1
2
,j+ 1

2

∆x∆y

The torque term
∫
Γ (x− C) × (−p + 2µD) N is discretized in the same manner as

above.

3.5. Extrapolation. Consider extrapolating a function f de�ned in region Ω to a
larger region Ωε = {x| ‖x− y‖ < ε for some y ∈ Ω}. For each grid point x ∈ Ωε−Ω,
collect all of its neighboring grid points {x1, · · · , xN} such that ‖x− xi‖ < ε and
xi ∈ Ω for each i. Now we face a problem to evaluate f (x) out of the grid points
{x1, · · · , xN} and the function values on them {f1, · · · , fN}. We take the Shepard
algorithm [19] that is simple and stable in the maximum norm.

f (x) =
∑N

i=1 wif (xi)∑N
i=1 wi

The weight is chosen as wi = 1/ ‖x− xi‖2 for each i, so that closer points in�uence
the evaluation more. In our computations, we take ε = 4 ·∆x.

3.6. Projection. Given a velocity �eld U∗ of �uid and momentum vectors P ∗and
L∗ of solid, the incompressible condition and the interaction identities (4) can be
enforced by the following projection method. From the �uid equations (1) and the
solid equations (2), we make the following ansatz with pressure variable p.

U = U∗ −∆t · Gp

ρ

P = P ∗ −∆t ·
∑

ij

(
p

[
DxH
DyH

])

ij

∆x∆y

L = L∗ −∆t ·
∑

ij

(
p (x− C)×

[
DxH
DyH

])

ij

∆x∆y
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From the �uid incompressible condition ∇ · U = 0 and the interaction identity
U · ∇H = U solid · ∇H, we set

(Div (HU))ij = U solid
ij ·

[
DxH
DyH

]

ij

.

Here U solid
ij = m−1P + M−1L × (Xij − C) and Xij denotes the grid node with

index (i, j). Combining the equations, a Poisson equation is derived for the pressure.

−
(

Div

(
H

ρ
Gp

))

ij

= − (Div (H (U∗ − U)))ij

= − (Div (HU∗))ij + U solid
ij ·

[
DxH
DyH

]

ij

There are pressure terms on the right-hand-side, since

U solid
ij = U solid,∗

ij +
∑

ij

(
p

(
1
m

+ M−1 (X − C)×
) [

DxH
DyH

])

ij

∆x∆y.

Collecting all the pressure terms on the left-hand-side, we obtain the following linear
system.

−
(

Div

(
H

ρ
Gp

))

ij

+
[

DxH
DyH

]

ij

· v +
(

(X − C)×
[

DxH
DyH

])

ij

· ω

= − (Div (HU∗))ij + U solid,∗
ij ·

[
DxH
DyH

]

ij

∑

ij

(
p

[
DxH
DyH

])

ij

− m

∆x∆y
v = 0

∑

ij

(
p (X − C)×

[
DxH
DyH

])

ij

− K

∆x∆y
ω = 0

For notational conveniences, we write the system in a block form.



A J1 J2

JT
1 −m

a 0
JT

2 0 −M
a







p
v
ω


 =




rhs
0
0




The matrix is symmetric, but is not positive-de�nite, which puts a hesitation in
using the conjugate gradient( CG ) method. Actually it is positive-de�nite as long
as the last two equations are satis�ed. Moreover, being a Krylov space method, CG
method can solve any symmetric linear system Ax = b as long as the direction vector
has non-zero conjugate length, d · Ad 6= 0. From these reasons, we solved the linear



A HEAVISIDE-FUNCTION APPROACH 157

system by CG with the block LU preconditioner. In the below, M is the MILU
preconditioner for A.




M J1 J2

JT
1 −m

a 0
JT

2 0 −M
a



−1

=







I 0 0
JT

1 M−1 I 0
JT

2 M−1 UT D−1
1 I







M J1 J2

0 D1 U
0 0 D2






−1

Here D1 = −m
a − JT

1 M−1J1, U = −JT
1 M−1J2, and D2 = −M

a − JT
2 M−1J2 −

UT D−1
1 U . Since ∇H has a support only near the interface, the matrix blocks J1 and

J2 are stored sparse for faster matrix multiplication.
Theorem 3.1. The projection by the pressure does not increases the kinetic energy
of �uid and solid.

Proof. The kinetic energy of �uid and solid is K =
∫
Ω

ρ
2U2 + 1

2mP · P + 1
2M−1L ·L,

and discretized as

K (U,P, L) =
1
2

∑

ij

((
ρHu2

)
i+ 1

2
,j

+
(
ρHv2

)
i,j+ 1

2

)
+

1
2m

P · P +
1
2
M−1L · L.

Comparing K (U∗, P ∗, L∗) with K (U,P, L),

K (U∗, P ∗, L∗) = K (U,P, L) +
∆t2

2


∑

ij

(Dxp)2i+ 1
2
,j + (Dyp)2i,j+ 1

2
+ mv2 + Mω2




+∆t ·

∑

ij

(
(HuDxp)i+ 1

2
,j + (HvDyp)i+ 1

2
,j

)
+ P · v + L · ω


 .

Using the discrete integration-by-parts formula in MAC grids,

−
∑

ij

(
(HuDxp)i+ 1

2
,j + (HvDyp)i+ 1

2
,j

)

=
∑

ij

(pDiv (HU))ij

=
∑

ij

(
pU solid ·

[
DxH
DyH

])

ij

=
∑

ij

(
p

(
P/m + M−1L× (X − C)

) ·
[

DxH
DyH

])

ij

= P · v + L · ω.

Thus K (U∗, P ∗, L∗) ≥ K (U,P, L). ¤
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4. Temporal Discretization

We take the projection approach : the Navier-Stokes equations (1) and the Euler
equations (2) are advanced with a pressure guess, and then the advanced variables are
projected. While explicit temporal discretization for ordinary di�erential equations
have stability condition ∆t = O (1), their stability condition for convection-di�usion
partial di�erential equations is much restrictive, ∆t = O

(
∆x2

)
. Thus we explicitly

discretize the Euler equations for conveniences and implicitly discretize the Navier-
Stokes equations for faster simulation.

4.1. Adams-Bashford method. The Euler equations are advanced with the sec-
ond order Adams-Bashford method.





(
Cn+1 − Cn

)
/∆t = 3

2Pn − 1
2Pn−1

(P ∗ − Pn) /∆t = 3
2Fn − 1

2Fn−1 + mg
(L∗ − Ln) /∆t = 3

2Tn − 1
2Tn−1

(
Rn+1 −Rn

)
/∆t = 3

2 (ωn)×Rn − 1
2

(
ωn−1

)×
Rn−1

Here F =
∫
Rd (2µD)∇H and T =

∫
Rd (x− C)× (2µD)∇H are discretized by the

integration algorithm in the previous section. Let φ0 (x) be the initial level function
for the solid, taking positive value outside the solid and negative value inside. The
level function φn+1 is calculated as

φn+1
ij = φ0

((
Rn+1

)−1 (
Xij − Cn+1

)
+ C0

)
,

for each grid index i and j. The function value of φ0 is calculated by the quadratic
interpolation in the previous section.

4.2. Collision resolution. When the rigid body collides with the rectangular bound-
ary, the collision is resolved by the momentum impulse J calculated as follows. Let
the collision occur at position X with normal vector N on the boundary.

JI = −
(

N · V −

N ·KN

)
N

JII = −K̃−1V −

J = (1 + en) JI + (1 + et) (JII − JI)

Here V − = 1
mP +

(
K−1L

) × (X − C) is the velocity at the collision point X

and K̃ = 1
m − (X − C)×K−1 (X − C)× is the collision matrix. JI is the sliding

impulse and JII is the sticking impulse. en ∈ [0, 1] and et ∈ [−1, 1] are the bouncing
parameter in the normal and tangential direction, respectively. A moderate elastic
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bouncing is taken by choosing en = 0.7 and et = −0.7. See the details in [3, 10].
Then the linear and angular momentum are updated as

P+ = P− + J

L+ = L− + (X − C)× J.

Here P− and L− are momentum before the collision resolution, and P+ and L+

are after collision resolution.
4.3. Semi-Lagrangian method. The convection term is discretized by the second
order semi-Lagrangian method. Let xn+1 be a grid node at time tn+1. The node
point is moved backward along the characteristic curves by the second order Runge-
Kutta method.

xn+ 1
2 = xn+1 − ∆tn+ 1

2

2
Un

(
xn+1

)

xn = xn+1 −∆tn+ 1
2 Un+ 1

2

(
xn+ 1

2

)

The intermediate velocity is extrapolated as

Un+ 1
2

(
xn+ 1

2

)
= Un

(
xn+ 1

2

)
+

1
2

∆tn+ 1
2

∆tn−
1
2

(
Un

(
xn+ 1

2

)
− Un−1

(
xn+ 1

2

))
.

The Lagrangian coordinates do not fall on grid nodes in general, and the function
values on them are evaluated using the quadratic interpolation introduced in the
previous section.

Un
d

(
xn+1

)
= Un (xn)

φair,n+1
(
xn+1

)
= φair,n (xn)

4.4. Reinitializing Level-set function. The updated level function φair needs to
be reinitialized to prevent cases that its graph is too �at or too steep around the
interface. In such cases, a small perturbation of the level function may result in a
big change of interface location, and the level function may lose enough regularity
near the interface. It is therefore desired to replace the level function with a better
behaved one, the signed distance function to the interface. We update the level
function through the reinitialization equation [21].

φt + sgn
(
φ0

)
(‖∇φ‖ − 1) = 0

Here φ0 (x) = φ (x, 0) = φair (x) . The spatial derivatives are discretized by the second
order ENO �nite di�erences with subcell resolution near the interface [18, 11]. The
temporal derivative is discretized by the e�cient Gauss-Seidel update [11].
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φij := φij −∆tij · sgn
(
φ0

ij

) (
HG

(
D+

x φij , D
−
x φij , D

+
y φij , D

−
y φij

)− 1
)

Here HG is the Gonunov numerical Hamiltonian [15] whose formula is

HG (a, b, c, d) =





√
max

(
(a−)2 , (b+)2

)
+ max

(
(c−)2 , (d+)2

)
when sgn(φ0) ≥ 0

√
max

(
(a+)2 , (b−)2

)
+ max

(
(c+)2 , (d−)2

)
when sgn(φ0) < 0

.

Here D±
x and D±

y denote the one-sided ENO �nite di�erences at x and y directions.
Since it is a dimension by dimension approach, we only consider D+

x . The details of
the other cases can be found in [11].

D+
x φij =

φi+1,j − φij

∆x
− ∆x

2
minmod

(
D2

xφij , D
2
xφi+1,j

)

Near the interface or φi+1,jφij < 0, the �nite di�erence is modi�ed to impose the
condition that φ = 0 whenever φ0 = 0.

D+
x φij =

0− φij

∆x+
− ∆x+

2
minmod (Dxxφij , Dxxφi+1,j)

Here ∆x+ is the distance from the grid node to the interface point. The time step
is taken as

∆tij = .45 ·min
(
∆x+, ∆x−, ∆y+, ∆y−

)
.

4.5. Crank-Nicolson method. The intermediate variable U∗ is obtained by ap-
plying the Crank-Nicolson method to the equation of momentum conservation, which
results in the following linear system.

ρn+1U∗−∆t ·Div
(
2µn+1D (U∗)

)
= ρn+1Un

d + ∆t ·Div
(
2µn+1D (Un

d )
)
+ ∆t · ρn+1g

The system is discretized at grid facets inside the �uid region,
{
φn+1 > 0

}
. Out-

side the �uid region, the Dirichlet boundary condition is imposed as follows.

U∗ = U solid,n+1 + ∆t

(
Gpn

ρn

)

d

Note that the linear system couples all the components of the velocity �eld U∗, unless
µ is constant everywhere . The linear system is symmetric positive de�nite, and can
be e�ciently solved in all our tested examples by the conjugate gradient method
with the Jacobi preconditioner.
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4.6. CFL condition. The SL-CN is unconditionally stable. For simplicity, we take
the CFL condition

∆tCFL = min
(

∆x

‖un‖∞
,

∆y

‖vn‖∞
,

∆z

‖wn‖∞

)
.

If the time step is similar to the CFL condition such that 1
2∆tCFL ≤ ∆t ≤ ∆tCFL,

the variables are updated as Un−1 := Un and Un := Un+1. When ∆t > ∆tCFL, the
time step ∆t keeps being reduced by half with averaging Un−1 := 1

2

(
Un−1 + Un

)

until ∆t ≤ ∆tCFL. When ∆t < 1
2∆tCFL, the time step is increased twice with the

update Un := Un+1.

5. Example

In all the following examples, the meter-kilogram-second( MKS ) units are as-
sumed. The physically parameters are chosen : ρair = 1.226, ρwater = 1000,
µair = 1.780 × 10−5, µwater = 1.137 × 10−3, and g = (0,−9.8, 0). The �uid and
solid are bounded by a rectangular domain. On the rectangular boundary, the non-
penetration( homogeneous Dirichlet ) boundary condition is imposed for the normal
velocity component, and the slip( homogeneous Neumann ) boundary condition for
the tangent velocity components.

5.1. Single vortex in a square domain. We test the convergence order of the
�uid solver in a simple setting. Consider a domain

[−π
2 , π

2

]2 and a single vortex �ow
whose exact solutions are given as u = − cos (t) cos (x) sin (y), v = cos (t) cos (y) sin (x),
and p = −1

4 cos2 (t) (cos (2x) + cos (2y)). Table 1 shows the second order accuracy
of the �uid solver in the L∞ and L1 norms at time t = π. The momentum equation
in equation (1) is discretized by the SL-BDF method. A better known choice for
discretizing di�usion terms is the Crank-Nicolson method. Though it has the same
order of accuracy as BDF, its combination with semi-Lagrangian and projection
method results in a drop of overall accuracy to the �rst order [23]. The table also
shows the accuracy drop of SL-CN method, and we tke the SL-BDF combination to
all the following examples.

5.2. Single vortex in an irregular domain. Consider an irregular domain
{

(x, y) ∈
[
−π

2
,
π

2

]2
| cosx · cos y ≥ .5

}

and a single vortex �ow whose exact solutions are given as u = − cos (t) cos (x) sin (y),
v = cos (t) cos (y) sin (x), and p = −1

4 cos2 (t) (cos (2x) + cos (2y)). There are many
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SL-BDF
Grid resolution L∞error order L1 error order

502 5.10× 10−4 1.08× 10−4

1002 1.29× 10−4 1.98 2.69× 10−5 2.01
2002 3.16× 10−5 2.03 6.74× 10−6 2.00
4002 7.81× 10−6 2.02 1.69× 10−6 2.00

SL-CN
Grid resolution L∞error order L1 error order

502 1.19× 10−2 4.18× 10−3

1002 5.98× 10−3 0.99 2.07× 10−3 1.01
2002 2.99× 10−3 1.00 1.03× 10−3 1.01
4002 1.49× 10−3 1.00 5.15× 10−4 1.00

Table 1. Accuracy of the velocity �eld for the single vortex example

Heaviside function : length fraction
grid L∞error order L1 error order
502 1.12× 10−3 1.72× 10−4

1002 2.24× 10−4 2.32 3.83× 10−5 2.17
2002 5.28× 10−5 2.08 8.57× 10−6 2.16
4002 1.33× 10−5 1.99 2.07× 10−6 2.05

Heaviside function : Tower's method
grid L∞error order L1 error order
502 3.21× 10−1 4.87× 10−3

1002 3.46× 10−1 -0.11 3.03× 10−3 0.68
2002 3.78× 10−1 0.09 1.86× 10−3 0.70
4002 3.83× 10−1 -0.02 1.49× 10−3 0.32

Table 2. Accuracy of the velocity �eld for the single vortex in an
irregular domain

ways for discretizing heaviside function: One way is H (x) = ∇φ+·∇φ
∇φ·∇φ , and another is

a control-volume approach . Table 2 shows that the choice of length fraction leads
to the second order accuracy in the L∞ and L1 norms at time t = π, but the Tower's
approach leads to the �rst order convergence in L1 and non-convergence in L∞.
There are many discretizations of Heaviside functions that are second order accurate
in approximate the integrals in irregular domains, but their accuracy applications
to partial di�erential equations seems quite di�erent, and may require an extensive
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grid arc-length computed error order
202 6.225879 5.73× 10−2

402 6.270235 1.29× 10−2 2.15
802 6.280100 3.08× 10−3 2.06
1602 6.282432 7.54× 10−4 2.03

Table 3. Accuracy of Heaviside function in integration

Figure 1. Vorticity contours for Re = 100(top) and Re =
200(bottom) cases

trial and investigation. We discretize the Heaviside function as the length fraction
for all the following examples.
5.3. Accuracy of Heaviside function in integration. φ =

√
x2 + y2 − 1 on a

domain [−2, 2]2. The arc-length of the circle is measured as
∫
Γ 1 =

∫
[−2,2]2 ∇H ·∇φ '∑

i,j (DxH ·Dxφ + DyH ·Dyφ)i,j .

5.4. Flow past circular cylinder.

5.5. Floating rectangle. We consider inviscid two-phase �ows with physical den-
sities for water and air. domain : [0, 1]2.
5.6. Emerging disk. A rectangular domain [−0.2, 0.2] × [−0.2, 0.4] is �lled with
water such that φair = −y + 0.2. A solid of circular shape is in the middle of the
water, φ =

√
x2 + y2−0.07. The �uid and solid are initially motionless. The density
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Figure 2. Temporal variations of drag and lift coe�cients for Re =
100(left) and Re = 200(right) cases

Figure 3. the result of the emerging disk: t = 0, 0.4, 1.0 and 5.0 from
the left. The blue curve is the interface between solid and �uids, and
the red one is between water and air.

of solid is 400 that is smaller than that of water, so that it emerges upward breaking
the air-water interface. Figure 3 shows the simulation calculated in a 100×150 grid.
As seen in �gure 4, the disk �uctuates on the water surface and becomes stationary
at around t = 5.0.
5.7. Emerging sphere. A rectangular domain [−0.2, 0.2]× [−0.2, 0.4]× [−0.2, 0.2]
is �lled with water such that φair = −y + 0.2. A solid of spherical shape is in the
middle of the water, φ =

√
x2 + y2 + z2 − 0.07. The �uid and solid are initially
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Figure 4. the oscillation of the emerging disk

Figure 5. the result of the emerging sphere: t = 0, 0.28, 0.6 and 5.0
from the left. The blue surface is the interface between solid and
�uids, and the red one is between water and air. The vector �eld is
drawn on the center of the y-section.

motionless. The density of solid is 400 that is smaller than that of water, so that
it emerges upward breaking the air-water interface. Figure 3 shows the simulation
calculated in a 100 × 150 × 100 grid. As seen in �gure 6, the sphere �uctuates on
the water surface with amplitude getting smaller in time.

5.8. Floating cylinder. A rectangular domain [−0.2, 0.2]× [−0.2, 0.4]× [−0.2, 0.2]
is �lled with water up to level y = 0. A cylinder-shaped solid is �oating in the water.
Its density is 500, that is a half of that of water, and its center is at the water level,
so that the gravity force balances out with the buoyancy force. A water ball of radius
0.07 and center (0.1, 0.2, 0) is up in the air. The initial level functions are given as
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Figure 6. the oscillation of the emerging sphere

φair (x, y, z) = max
(
−y, .07−

√
(x− 0.1)2 + (y − 0.2)2 + z2

)

φ (x, y, z) = min
(

max (x− a, r − b) ,

√
(x− a)2 + (r − b)2

)
− 0.02,

where r =
√

y2 + z2, a = 0.08 and b = 0.03. Figure 7 shows the simulation
calculated in a 100 × 150 × 100 grid. As the water ball collides with the cylinder,
the water-air interface violently �uctuates, and then the �uid di�usion calms down
the �uctuation as time goes on. Figure 8 shows the balance between the potential
energy U (t) and the kinetic energy K (t). The decrease of potential energy leads to
the increase of kinetic energy, and vice versa. Kinetic energy is measured as described
in theorem 3.1, and potential energy is measured as follows.

U (t) = −
∑

ijk

(ρijkgHijk (Xijk · g))−m (g · C)

Here Xijk is the grid node of index (i, j, k), and Hijk is averaged from Hi± 1
2
jk,

Hij± 1
2
k, and Hijk± 1

2
. Analytically, the total energy dissipates proportionally to the

magnitude of strain-rate tensor.

d

dt
(U (t) + K (t)) =

d

dt

(
−

∫
ρHg · x−mg · C

)

+
d

dt

(
1
2

∫
ρHU2 +

1
2
m−1P 2 +

1
2
M−1L2

)
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Figure 7. the result of the �oating cylinder : t = 0, 0.16, 0.33, 0.56,
0.72, 1.0, 2.0 and 3.0 from the left and from the top. The blue surface
is the interface between solid and �uids, and the red one is between
water and air. The vector �eld is drawn on the middle of the y-section.

Figure 8. potential and kinetic energy in the �oating cylinder

=
∫

ρHU · (Ut + (U · ∇) U − g) + m−1P ·
∫

(−p + 2µD)∇H

+M−1L ·
∫

(x− C)× (−p + 2µD)∇H

= −
∫

µH ‖D‖2
Fr

Here ‖D‖Fr denotes the Frobenius norm. Coping with the analysis, the total
energy in �gure 8 keeps decreasing and becomes stationary as �uid gradually becomes
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Figure 9. volume of water in the �oating cylinder

at rest. In �gure 9, the volume of water is lost or gained by numerical errors, but
the error is less than 1.2% of the initial volume.
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