Browse > Article
http://dx.doi.org/10.7468/jksmeb.2012.19.2.147

A HEAVISIDE-FUNCTION APPROACH FOR THE INTERACTION OF TWO-PHASE FLUID AND NON-DEFORMABLE SOLID  

Kang, Myung-Joo (Department of Mathematical Sciences, Seoul National University)
Min, Cho-Hong (Department of Mathematics, Ewha Womans University)
Publication Information
The Pure and Applied Mathematics / v.19, no.2, 2012 , pp. 147-169 More about this Journal
Abstract
We introduce a Heaviside-function formulation of the interaction between incompressible two-phase fluid and a non-deformable solid. Fluid and solid interact in two ways : fluid satises the Dirichlet boundary condition imposed by the velocity field of solid, and solid is accelerated by the surface traction exerted by fluid. The two-way couplings are formulated by the Heaviside function to the interface between solid and fluid. The cumbersome treatment of interface is taken care of by the Heaviside function, and the interaction is discretized in a simple manner. The discretization results in a stable and accurate projection method.
Keywords
incompressible fluid; Navier-Stokes equations; fluid-solid interaction; Heaviside function;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Batty, F. Bertails & R. Bridson: A fast variational framework for accurate solid-fluid coupling. ACM Trans. Graph. (SIGGRAPH Proc.) 26 (2007), no. 3.
2 J. B. Bell, P. Colella & H. M. Glaz: A second order projection method for the incompressible Navier-Stokes equations. J. Comput. Phys 85 (1989), 257-283.   DOI
3 A. Chatterjee & A. Ruina: A new algebraic rigid body collision law based on impulse space considerations. J. Appl. Mech. 65 (1998), 939-950.   DOI
4 A. Chorin: A Numerical Method for Solving Incompressible Viscous Flow Problems. J. Comput. Phys. 2 (1967), 12-26.   DOI   ScienceOn
5 A. du Chene & F. Gibou: Second-order accurate computation of curvatures in a level set framework using novel high-order reinitialization schemes. J. Sci. Comput. (in press) 35 (2008), 114-131.   DOI
6 W. E & J. G. Liu: Gauge method for viscous incompressible flows. Comm. Math. Sci. 1 (2003), 317-332.   DOI
7 K. Erleben, J. Sporring, K. Henriksen & H. Dohlmann: Physics-based animation. Charles river media, 2005.
8 J. Kim & P Moin: Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys. 59 (1985), 308-323.   DOI   ScienceOn
9 L. D. Landau & E. M. Lifshitz: Mechanics. Butterworth-Heinemann, 1976.
10 C. Min: Numerical analysis and scientific computing. Chungmoongak, Korea, 2010.
11 C. Min: On reinitializing level set functions. J. Comput. Phys. 229 (2010, 2764-2772.   DOI
12 C. Min & F. Gibou: A second order accurate level set method on non-graded adaptive Cartesian grids. J. Comput. Phys. 225 (2007), 300-321.   DOI
13 C. Min & F. Gibou: Robust second order accurate discretizations of the multi-dimensional heaviside and dirac delta functions. J. Comput. Phys. 227 (2008), 9686-9695.   DOI
14 C. Min: An efficient fluid-solid coupling algorithm for single-phase flows. J. Comput. Phys. 228 (2009), 8807-8829.   DOI
15 S. Osher & J. Sethian: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1998), 12-49.
16 J.W. Purvis & J.E. Burkhalter: Prediction of critical mach number for store configurations. AIAA J. 17 (1979), 1170-1177.   DOI
17 A. Robinson-Mosher, T. Shinar, J. Gretarsson, J. Su & R. Fedkiw: Two-way coupling of fluids to rigid and deformable solids and shells. ACM Trans. Graph. 27 (2008), no. 46.
18 G. Russo & P. Smereka: A remark on computing distance functions. J. Comput. Phys. 163 (2000), 51-67.   DOI
19 D. Shepard: A two-dimensional interpolation function for irregularly spaced data. In Proc. of the 23rd ACM Nat. Conf. (1968), 517-523.
20 M. Sussman, E. Fatemi, P. Smereka & S. Osher: An improved level set method for incompressible two-phase flows. Computers and Fluids 27 (1998), 663-680.   DOI
21 M. Sussman, P. Smereka & S. Osher: A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 114 (1994), 146-159.   DOI   ScienceOn
22 J. Towers: Finite difference methods for approximating heaviside functions. J. Comput. Phys. 228 (2009), 3478-3489.   DOI
23 D. Xiu & G. Karniadakis: A semi-Lagrangian high-order method for Navier-Stokes equations. J. Comput. Phys 172 (2001), 658-684.   DOI